Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(19): e9872, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39044122

RESUMO

RATIONALE: Eucommia cortex is the core herb in traditional Chinese medicine preparations for the treatment of osteoporosis. Pinoresinol diglucoside (PDG), the quality control marker and the key pharmacodynamic component in Eucommia cortex, has attracted global attention because of its definite effects on osteoporosis. However, the in vivo metabolic characteristics of PDG and its anti-osteoporotic mechanism are still unclear, restricting its development and application. METHODS: Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to analyze the metabolic characteristics of PDG in rats, and its anti-osteoporosis targets and mechanism were predicted using network pharmacology. RESULTS: A total of 51 metabolites were identified or tentatively characterized in rats after oral administration of PDG (10 mg/kg/day), including 9 in plasma, 28 in urine, 13 in feces, 10 in liver, 4 in heart, 3 in spleen, 11 in kidneys, and 5 in lungs. Furan-ring opening, dimethoxylation, glucuronidation, and sulfation were the main metabolic characteristics of PDG in vivo. The potential mechanism of PDG against osteoporosis was predicted using network pharmacology. PDG and its metabolites could regulate BCL2, MARK3, ALB, and IL6, involving PI3K-Akt signaling pathway, estrogen signaling pathway, and so on. CONCLUSIONS: This study was the first to demonstrate the metabolic characteristics of PDG in vivo and its potential anti-osteoporosis mechanism, providing the data for further pharmacological validation of PDG in the treatment of osteoporosis.


Assuntos
Lignanas , Farmacologia em Rede , Osteoporose , Ratos Sprague-Dawley , Animais , Lignanas/farmacologia , Lignanas/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Glucosídeos/farmacologia , Metaboloma/efeitos dos fármacos , Espectrometria de Massas/métodos
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612594

RESUMO

Members of the abscisic acid (ABA)-responsive element (ABRE) binding factor (ABF) and ABA-responsive element binding protein (AREB) families play essential roles in the regulation of ABA signaling pathway activity and shape the ability of plants to adapt to a range of stressful environmental conditions. To date, however, systematic genome-wide analyses focused on the ABF/AREB gene family in wheat are lacking. Here, we identified 35 ABF/AREB genes in the wheat genome, designated TaABF1-TaABF35 according to their chromosomal distribution. These genes were further classified, based on their phylogenetic relationships, into three groups (A-C), with the TaABF genes in a given group exhibiting similar motifs and similar numbers of introns/exons. Cis-element analyses of the promoter regions upstream of these TaABFs revealed large numbers of ABREs, with the other predominant elements that were identified differing across these three groups. Patterns of TaABF gene expansion were primarily characterized by allopolyploidization and fragment duplication, with purifying selection having played a significant role in the evolution of this gene family. Further expression profiling indicated that the majority of the TaABF genes from groups A and B were highly expressed in various tissues and upregulated following abiotic stress exposure such as drought, low temperature, low nitrogen, etc., while some of the TaABF genes in group C were specifically expressed in grain tissues. Regulatory network analyses revealed that four of the group A TaABFs (TaABF2, TaABF7, TaABF13, and TaABF19) were centrally located in protein-protein interaction networks, with 13 of these TaABF genes being regulated by 11 known miRNAs, which play important roles in abiotic stress resistance such as drought and salt stress. The two primary upstream transcription factor types found to regulate TaABF gene expression were BBR/BPC and ERF, which have previously been reported to be important in the context of plant abiotic stress responses. Together, these results offer insight into the role that the ABF/AREB genes play in the responses of wheat to abiotic stressors, providing a robust foundation for future functional studies of these genes.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Filogenia , Regulação da Expressão Gênica , Fatores Estimuladores Upstream
3.
Front Plant Sci ; 15: 1347842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328701

RESUMO

FHY3 and its homologous protein FAR1 are the founding members of FRS family. They exhibited diverse and powerful physiological functions during evolution, and participated in the response to multiple abiotic stresses. FRF genes are considered to be truncated FRS family proteins. They competed with FRS for DNA binding sites to regulate gene expression. However, only few studies are available on FRF genes in plants participating in the regulation of abiotic stress. With wide adaptability and high stress-resistance, barley is an excellent candidate for the identification of stress-resistance-related genes. In this study, 22 HvFRFs were detected in barley using bioinformatic analysis from whole genome. According to evolution and conserved motif analysis, the 22 HvFRFs could be divided into subfamilies I and II. Most promoters of subfamily I members contained abscisic acid and methyl jasmonate response elements; however, a large number promoters of subfamily II contained gibberellin and salicylic acid response elements. HvFRF9, one of the members of subfamily II, exhibited a expression advantage in different tissues, and it was most significantly upregulated under drought stress. In-situ PCR revealed that HvFRF9 is mainly expressed in the root epidermal cells, as well as xylem and phloem of roots and leaves, indicating that HvFRF9 may be related to absorption and transportation of water and nutrients. The results of subcellular localization indicated that HvFRF9 was mainly expressed in the nuclei of tobacco epidermal cells and protoplast of arabidopsis. Further, transgenic arabidopsis plants with HvFRF9 overexpression were generated to verify the role of HvFRF9 in drought resistance. Under drought stress, leaf chlorosis and wilting, MDA and O2 - contents were significantly lower, meanwhile, fresh weight, root length, PRO content, and SOD, CAT and POD activities were significantly higher in HvFRF9-overexpressing arabidopsis plants than in wild-type plants. Therefore, overexpression of HvFRF9 could significantly enhance the drought resistance in arabidopsis. These results suggested that HvFRF9 may play a key role in drought resistance in barley by increasing the absorption and transportation of water and the activity of antioxidant enzymes. This study provided a theoretical basis for drought resistance in barley and provided new genes for drought resistance breeding.

4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396749

RESUMO

Tube-like outgrowths from root epidermal cells, known as root hairs, enhance water and nutrient absorption, facilitate microbial interactions, and contribute to plant anchorage by expanding the root surface area. Genetically regulated and strongly influenced by environmental conditions, longer root hairs generally enhance water and nutrient absorption, correlating with increased stress resistance. Wheat, a globally predominant crop pivotal for human nutrition, necessitates the identification of long root hair genotypes and their regulatory genes to enhance nutrient capture and yield potential. This study focused on 261 wheat samples of diverse genotypes during germination, revealing noticeable disparities in the length of the root hair among the genotypes. Notably, two long root hair genotypes (W106 and W136) and two short root hair genotypes (W90 and W100) were identified. Transcriptome sequencing resulted in the development of 12 root cDNA libraries, unveiling 1180 shared differentially expressed genes (DEGs). Further analyses, including GO function annotation, KEGG enrichment, MapMan metabolic pathway analysis, and protein-protein interaction (PPI) network prediction, underscored the upregulation of root hair length regulatory genes in the long root hair genotypes. These included genes are associated with GA and BA hormone signaling pathways, FRS/FRF and bHLH transcription factors, phenylpropanoid, lignin, lignan secondary metabolic pathways, the peroxidase gene for maintaining ROS steady state, and the ankyrin gene with diverse biological functions. This study contributes valuable insights into modulating the length of wheat root hair and identifies candidate genes for the genetic improvement of wheat root traits.


Assuntos
Transcriptoma , Triticum , Humanos , Perfilação da Expressão Gênica , Fenótipo , Água , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética
5.
Chem Biodivers ; 21(4): e202400290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389159

RESUMO

Osthole (also known as Osthol) is the main anti-inflammatory coumarin found in Cnidium monnieri and severs as the exclusive quality-controlled component according the Chinese Pharmacopoeia. However, its underlying anti-inflammatory mechanism remains unknown. In this study, we demonstrated that Osthole treatment significantly inhibited the generation of TNF-α, but not IL-6 in the classical LPS-stimulated RAW264.7 macrophage model. In addition, LPS induced the activation of both MAPK and NF-κB signalling pathways, of which the former was dose-dependently restrained by Osthole via suppressing the phosphorylation of JNK and P38 proteins, while the phosphorylation of IκB and P65 proteins remained unaffected. Interestingly, Osthole dose-dependently up-regulated the expression of the key cholinergic anti-inflammatory pathway regulator α7nAChR, and the TNF-α inhibition effect of Osthole was also significantly alleviated by the treatment of α7nAChR antagonist methylbetaine. These results demonstrate that Osthole may regulate TNF-α by promoting the expression of α7nAChR, thereby activate the vagus nerve-dependent cholinergic anti-inflammatory pathway.


Assuntos
Fator de Necrose Tumoral alfa , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Regulação para Cima , Lipopolissacarídeos/farmacologia , Neuroimunomodulação , Cumarínicos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
6.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047154

RESUMO

Transcription factors (TFs) are important regulators of numerous gene expressions due to their ability to recognize and combine cis-elements in the promoters of target genes. The INDETERMINATE DOMAIN (IDD) gene family belongs to a subfamily of C2H2 zinc finger proteins and has been identified only in terrestrial plants. Nevertheless, little study has been reported concerning the genome-wide analysis of the IDD gene family in maize. In total, 22 ZmIDD genes were identified, which can be distributed on 8 chromosomes in maize. On the basis of evolutionary relationships and conserved motif analysis, ZmIDDs were categorized into three clades (1, 2, and 3), each owning 4, 6, and 12 genes, respectively. We analyzed the characteristics of gene structure and found that 3 of the 22 ZmIDD genes do not contain an intron. Cis-element analysis of the ZmIDD promoter showed that most ZmIDD genes possessed at least one ABRE or MBS cis-element, and some ZmIDD genes owned the AuxRR-core, TCA-element, TC-rich repeats, and LTR cis-element. The Ka:Ks ratio of eight segmentally duplicated gene pairs demonstrated that the ZmIDD gene families had undergone a purifying selection. Then, the transcription levels of ZmIDDs were analyzed, and they showed great differences in diverse tissues as well as abiotic stresses. Furthermore, regulatory networks were constructed through the prediction of ZmIDD-targeted genes and miRNAs, which can inhibit the transcription of ZmIDDs. In total, 6 ZmIDDs and 22 miRNAs were discovered, which can target 180 genes and depress the expression of 9 ZmIDDs, respectively. Taken together, the results give us valuable information for studying the function of ZmIDDs involved in plant development and climate resilience in maize.


Assuntos
Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Genoma de Planta
7.
Front Plant Sci ; 14: 1147019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938052

RESUMO

Wheat coleoptile is a sheath-like structure that helps to deliver the first leaf from embryo to the soil surface. Here, a RIL population consisting of 245 lines derived from Zhou 8425B × Chinese Spring cross was genotyped by the high-density Illumina iSelect 90K assay for coleoptile length (CL) QTL mapping. Three QTL for CL were mapped on chromosomes 2BL, 4BS and 4DS. Of them, two major QTL QCL.qau-4BS and QCL.qau-4DS were detected, which could explain 9.1%-22.2% of the phenotypic variances across environments on Rht-B1 and Rht-D1 loci, respectively. Several studies have reported that Rht-B1b may reduce the length of wheat CL but no study has been carried out at molecular level. In order to verify that the Rht-B1 gene is the functional gene for the 4B QTL, an overexpression line Rht-B1b-OE and a CRISPR/SpCas9 line Rht-B1b-KO were studied. The results showed that Rht-B1b overexpression could reduce the CL, while loss-of-function of Rht-B1b would increase the CL relative to that of the null transgenic plants (TNL). To dissect the underlying regulatory mechanism of Rht-B1b on CL, comparative RNA-Seq was conducted between Rht-B1b-OE and TNL. Transcriptome profiles revealed a few key pathways involving the function of Rht-B1b in coleoptile development, including phytohormones, circadian rhythm and starch and sucrose metabolism. Our findings may facilitate wheat breeding for longer coleoptiles to improve seedling early vigor for better penetration through the soil crust in arid regions.

8.
BMC Plant Biol ; 22(1): 372, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896980

RESUMO

BACKGROUND: Transcription factors GATAs were a member of zinc finger protein, which could bind DNA regulatory regions to control expression of target genes, thus influencing plant growth and development either in normal condition or environmental stresses. Recently, GATA genes have been found and functionally characterized in a number of plant species. However, little information of GATA genes were annotated in wheat. RESULTS: In the current study, 79 GATA genes were identified in wheat, which were unevenly located on 21 chromosomes. According to the analysis of phylogenetic tree and functional domain structures, TaGATAs were classified into four subfamilies (I, II, III, and IV), consist of 35, 21, 12, and 11 genes, respectively. Meanwhile, the amino acids of 79 TaGATAs exhibited apparent difference in four subfamilies according to GATA domains comparison, gene structures and conserved motif analysis. We then analyze the gene duplication and synteny between the genomes of wheat and Arabidopsis, rice and barley, which provided insights into evolutionary characteristics. In addition, expression patterns of TaGATAs were analyzed, and they showed obvious difference in diverse tissues and abiotic stresses. CONCLUSION: In general, these results provide useful information for future TaGATA gene function analysis, and it helps to better understand molecular breeding and stress response in wheat.


Assuntos
Arabidopsis , Triticum , Arabidopsis/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
9.
Front Plant Sci ; 13: 834654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432421

RESUMO

Elucidation of the composition, functional characteristics, and formation mechanism of wheat quality is critical for the sustainable development of wheat industry. It is well documented that wheat processing quality is largely determined by its seed storage proteins including glutenins and gliadins, which confer wheat dough with unique rheological properties, making it possible to produce a series of foods for human consumption. The proportion of different gluten components has become an important target for wheat quality improvement. In many cases, the processing quality of wheat is closely associated with the nutritional value and healthy effect of the end-products. The components of wheat seed storage proteins can greatly influence wheat quality and some can even cause intestinal inflammatory diseases or allergy in humans. Genetic and environmental factors have great impacts on seed storage protein synthesis and accumulation, and fertilization and irrigation strategies also greatly affect the seed storage protein content and composition, which together determine the final end-use quality of wheat. This review summarizes the recent progress in research on the composition, function, biosynthesis, and regulatory mechanism of wheat storage proteins and their impacts on wheat end-product quality.

10.
Front Plant Sci ; 13: 1087839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618673

RESUMO

Introduction: Protein kinases play an important role in plants in response to environmental changes through signal transduction. As a large family of protein kinases, sucrose non-fermenting-1 (SNF1)-related kinases (SnRKs) were found and functionally verified in many plants. Nevertheless, little is known about the SnRK family of Zea mays. Methods: Evolutionary relationships, chromosome locations, gene structures, conserved motifs, and cis-elements in promoter regions were systematically analyzed. Besides, tissue-specific and stress-induced expression patterns of ZmSnRKs were determined. Finally, functional regulatory networks between ZmSnRKs and other proteins or miRNAs were constructed. Results and Discussion: In total, 60 SnRK genes located on 10 chromosomes were discovered in maize. ZmSnRKs were classified into three subfamilies (ZmSnRK1, ZmSnRK2, and ZmSnRK3), consisting of 4, 14, and 42 genes, respectively. Gene structure analysis showed that 33 of the 42 ZmSnRK3 genes contained only one exon. Most ZmSnRK genes contained at least one ABRE, MBS, and LTR cis-element and a few ZmSnRK genes had AuxRR-core, P-box, MBSI, and SARE ciselements in their promoter regions. The Ka:Ks ratio of 22 paralogous ZmSnRK gene pairs revealed that the ZmSnRK gene family had experienced a purifying selection. Meanwhile, we analyzed the expression profiles of ZmSnRKs, and they exhibited significant differences in various tissues and abiotic stresses. In addition, A total of eight ZmPP2Cs, which can interact with ZmSnRK proteins, and 46 miRNAs, which can target 24 ZmSnRKs, were identified. Generally, these results provide valuable information for further function verification of ZmSnRKs, and improve our understanding of the role of ZmSnRKs in the climate resilience of maize.

11.
Front Genet ; 12: 724527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456980

RESUMO

Soil salinization is one of the major abiotic stresses that adversely affect the yield and quality of crops such as wheat, a leading cereal crop worldwide. Excavating the salt-tolerant genes and exploring the salt tolerance mechanism can help breeding salt-tolerant wheat varieties. Thus, it is essential to identify salt-tolerant wheat germplasm resources. In this study, we carried out a salt stress experiment using Qing Mai 6 (QM6), a salt-tolerant wheat variety, and sequenced the miRNAs and mRNAs. The differentially expressed miRNAs and mRNAs in salt stress conditions were compared with the control. As results, a total of eight salt-tolerance-related miRNAs and their corresponding 11 target mRNAs were identified. Further analysis revealed that QM6 enhances salt tolerance through increasing the expression level of genes related to stress resistance, antioxidation, nutrient absorption, and lipid metabolism balance, and the expression of these genes was regulated by the identified miRNAs. The resulting data provides a theoretical basis for future research studies on miRNAs and novel genes related to salt tolerance in wheat in order to develop genetically improved salt-tolerant wheat varieties.

12.
Plant Commun ; 2(2): 100082, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33898972

RESUMO

Recalcitrance to tissue culture and genetic transformation is the major bottleneck for gene manipulation in crops. In barley, immature embryos of Golden Promise have typically been used as explants for transformation. However, the genotype dependence of this approach limits the genetic modification of commercial varieties. Here, we developed an anther culture-based system that permits the effective creation of transgenic and gene-edited plants from commercial barley varieties. The protocol was tested in Golden Promise and four Australian varieties, which differed in phenology, callus induction, and green plant regeneration responses. Agrobacterium-mediated transformation was performed on microspore-derived callus to target the HvPDS gene, and T0 albinos with targeted mutations were successfully obtained from commercial varieties. Further editing of three targets was achieved with an average mutation rate of 53% in the five varieties. In 51 analyzed T0 individuals, Cas9 induced a large proportion (69%) of single-base indels and two-base deletions in the target sites, with variable mutation rates among targets and varieties. Both on-target and off-target activities were detected in T1 progenies. Compared with immature embryo protocols, this genotype-independent platform can deliver a high editing efficiency and more regenerant plants within a similar time frame. It shows promise for functional genomics and the application of CRISPR technologies for the precise improvement of commercial varieties.


Assuntos
Flores/genética , Edição de Genes/métodos , Genótipo , Hordeum/genética , Células Cultivadas/metabolismo , Células Vegetais/metabolismo
13.
BMC Plant Biol ; 19(1): 341, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382871

RESUMO

BACKGROUND: Barley is a low phosphorus (P) demand cereal crop. Tibetan wild barley, as a progenitor of cultivated barley, has revealed outstanding ability of tolerance to low-P stress. However, the underlying mechanisms of low-P adaption and the relevant genetic controlling are still unclear. RESULTS: We identified low-P tolerant barley lines in a doubled-haploid (DH) population derived from an elite Tibetan wild barley accession and a high-yield cultivar. The tolerant lines revealed greater root plasticity in the terms of lateral root length, compared to low-P sensitive lines, in response to low-P stress. By integrating the QTLs associated with root length and root transcriptomic profiling, candidate genes encoding isoflavone reductase, nitrate reductase, nitrate transporter and transcriptional factor MYB were identified. The differentially expressed genes (DEGs) involved the growth of lateral root, Pi transport within cells as well as from roots to shoots contributed to the differences between low-P tolerant line L138 and low-P sensitive lines L73 in their ability of P acquisition and utilization. CONCLUSIONS: The plasticity of root system is an important trait for barley to tolerate low-P stress. The low-P tolerance in the elite DH line derived from a cross of Tibetan wild barley and cultivated barley is characterized by enhanced growth of lateral root and Pi recycling within plants under low-P stress.


Assuntos
Hordeum/fisiologia , Fósforo/metabolismo , Raízes de Plantas/fisiologia , Adaptação Fisiológica , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genes de Plantas/fisiologia , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Fósforo/deficiência , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Locos de Características Quantitativas/genética , Estresse Fisiológico
14.
BMC Plant Biol ; 19(1): 68, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744569

RESUMO

BACKGROUND: Development of crop cultivars with high low nitrogen (LN) tolerance or nitrogen use efficiency (NUE) is imperative for sustainable agriculture development. Tibetan wild barley is rich in genetic diversity and may provide elite genes for LN tolerance improvement. Little has been known about transcriptional responses of the wild barley to chronic LN stress. RESULTS: In this study, transcriptomic profiling of two Tibetan wild barley genotypes, LN- tolerant XZ149 and LN-sensitive XZ56 has been conducted using RNA-Seq to reveal the genotypic difference in response to chronic LN stress. A total of 520 differentially expressed genes (DEGs) were identified in the two genotypes at 12 d after LN stress, and these DEGs could be mainly mapped to 49 metabolism pathways. Chronic LN stress lead to genotype-dependent responses, and the responsive pattern in favor of root growth and stress tolerance may be the possible mechanisms of the higher chronic LN tolerance in XZ149. CONCLUSION: There was a distinct difference in transcriptional profiling between the two wild barley genotypes in response to chronic LN stress. The identified new candidate genes related to LN tolerance may cast a light on the development of cultivars with LN tolerance.


Assuntos
Perfilação da Expressão Gênica/métodos , Hordeum/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Hordeum/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Tibet
15.
J Plant Physiol ; 234-235: 44-53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30665047

RESUMO

MicroRNAs (miRNAs) have diverse and crucial roles in plant growth and development, including in the response to abiotic stresses. Although plant responses to K deficiency are well documented at the physiological and transcriptional levels, the miRNA-mediated post-transcriptional pathways are still not clearly elucidated. In this study, high-throughput sequencing and degradome analysis were performed using two barley genotypes differing in low-K tolerance (XZ149, tolerant and ZD9, sensitive), to determine the genotypic difference in miRNAs profiling. A total of 270 miRNAs were detected in the roots of XZ149 and ZD9 at 2 d and 10 d after low-K treatment, of which 195 were commonly found in both genotypes. Their targets were further investigated by bioinformatics prediction and degradome sequencing approach. The results showed that ata-miR1432-5p might act as a regulator participating in Ca2+ signaling pathways in response to low-K stress. The difference in the miR444/MADS-box model as well as pathways mediated by miR319/TCP4 and miR396/GRF could be attributed to high tolerance to low-K stress in XZ149. In addition, other conserved and novel miRNAs families associated with low-K tolerance were also detected. The current results provide molecular evidence for understanding the possible involvement of miRNAs in the regulation of low-K tolerance.


Assuntos
Hordeum/metabolismo , MicroRNAs/metabolismo , Potássio/metabolismo , Estresse Fisiológico , Hordeum/genética , Hordeum/crescimento & desenvolvimento
16.
BMC Plant Biol ; 18(1): 187, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200885

RESUMO

BACKGROUND: Potassium (K) deficiency in arable land is one of the most important factors affecting crop productivity. Development of low K (LK) tolerant crop cultivars is regarded as a best economic and effective approach for solving the issue of LK. In previous studies, we found a wider variation of LK tolerance in the Tibetan wild barley accessions than cultivated barley. However, the mechanism of LK tolerance in wild barley is still elusive. RESULTS: In this study, two wild barley genotypes (XZ153, LK tolerant and XZ141, LK sensitive) and one cultivar (LuDaoMai, LK tolerant) was used to investigate metabolome changes in response to LK stress. Totally 57 kinds of metabolites were identified in roots and leaves of three genotypes at 16 d after LK treatment. In general, accumulation of amino acids and sugars was enhanced in both roots and leaves, while organic acids were reduced under LK stress compared to the control. Meanwhile, the concentrations of the negatively charged amino acids (Asp and Glu) and most organic acids was reduced in both roots and leaves, but more positively charged amino acids (Lys and Gln) were increased in three genotypes under LK. XZ153 had less reduction than other two genotypes in biomass and chlorophyll content under LK stress and showed greater antioxidant capacity as reflected by more synthesis of active oxygen scavengers. Higher LK tolerance of XZ153 may also be attributed to its less carbohydrate consumption and more storage of glucose and other sugars, thus providing more energy for plant growth under LK stress. Moreover, phenylpropanoid metabolic pathway mediated by PAL differed among three genotypes, which is closely associated with the genotypic difference in LK tolerance. CONCLUSIONS: LK tolerance in the wild barley is attributed to more active phenylpropanoid metabolic pathway mediated by PAL, energy use economy by reducing carbohydrate consumption and storage of glucose and other sugars, and higher antioxidant defense ability under LK stress.


Assuntos
Adaptação Fisiológica , Hordeum/metabolismo , Potássio/metabolismo , Metaboloma , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico
17.
Plant Cell Physiol ; 59(10): 1976-1989, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917153

RESUMO

Our previous studies showed that high salt tolerance in Tibetan wild barley accessions was associated with HvHKT1;1, a member of the high-affinity potassium transporter family. However, molecular mechanisms of HvHKT1;1 for salt tolerance and its roles in K+/Na+ homeostasis remain to be elucidated. Functional characterization of HvHKT1;1 was conducted in the present study. NaCl-induced transcripts of HvHKT1;1 were significantly higher in the roots of Tibetan wild barley XZ16 relative to other genotypes, being closely associated with its higher biomass and lower tissue Na+ content under salt stress. Heterologous expression of HvHKT1;1 in Saccharomyces cerevisiae (yeast) and Xenopus laevis oocytes showed that HvHKT1;1 had higher selectivity for Na+ over K+ and other monovalent cations. HvHKT1;1 was found to be localized at the cell plasma membrane of root stele and epidermis. Knock-down of HvHKT1;1 in barley led to higher Na+ accumulation in both roots and leaves, while overexpression of HvHKT1;1 in salt-sensitive Arabidopsis hkt1-4 and sos1-12 loss-of-function lines resulted in significantly less shoot and root Na+ accumulation. Additionally, microelectrode ion flux measurements and root elongation assay revealed that the transgenic Arabidopsis plants exhibited a remarkable capacity for regulation of Na+, K+, Ca2+ and H+ homeostasis under salt stress. These results indicate that HvHKT1;1 is critical in radial root Na+ transport, which eventually reduces shoot Na+ accumulation. Additionally, HvHKT1;1 may be indirectly involved in retention of K+ and Ca2+ in root cells, which also improves plant salt tolerance.


Assuntos
Hordeum/metabolismo , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Hordeum/efeitos dos fármacos , Hordeum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/fisiologia , Tolerância ao Sal/genética , Sódio/metabolismo , Xenopus laevis/fisiologia
18.
J Agric Food Chem ; 65(10): 2248-2257, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28221792

RESUMO

The degradation of starch in barley grains is a primary step of beer production. The addition of an appropriate amount of gibberellin (GA) promotes the production of fermentable sugars, beneficial to the brewing industry. However, the response of proteomics in germinating barley to GA and abscisic acid (ABA) treatments is not thoroughly understood. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) proteomics analysis was performed to illustrate the change of proteins in Tibetan wild barley XZ72 and XZ95 under GA and ABA treatments during germination. XZ72 had more proteins upregulated than XZ95 under GA treatment, while under ABA treatments, XZ95 had more proteins upregulated than XZ72. Concerning the proteins involved in energy metabolism under GA treatment, XZ72 had more proteins upregulated than XZ95. Among the 174 proteins related to starch metabolism, 31 proteins related to starch hydrolysis, such as α-amylase, α-glucosidase, and ß-fructofuranosidase, showed higher relative abundance in control and GA treatments in XZ72 than in XZ95. Analysis of correlation between proteins and metabolites indicated that higher hydrolase activity is beneficial for the accumulation of fermentable sugars during germination. On the other hand, 26 starch-synthesis-related proteins were upregulated in XZ95 under ABA treatment. It may be suggested that GA-induced proteins act as accelerators of starch degradation, while ABA-induced proteins inhibit starch degradation. The current results showed that XZ72 is highly capable of allocating the starch-hydrolyzing enzymes, which play important roles in starch breakdown.


Assuntos
Ácido Abscísico/farmacologia , Giberelinas/farmacologia , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo
19.
Plant Physiol Biochem ; 111: 257-265, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27951495

RESUMO

In a previous study, we identified the low-nitrogen (LN) tolerant accessions from the Tibetan wild barley (Hordeum vulgare subsp. spontaneum). In this study, two wild barley genotypes (XZ149, LN-tolerant and XZ56, LN-sensitive) and a barley cultivar ZD9 (H. vulgare) were used to determine the LN tolerant mechanism underlying the wild barley in the ionomic and physiological aspects. XZ149 exhibited higher LN tolerance with highest relative dry weight and N accumulation among three barley genotypes under LN stress. When exposed to LN stress, XZ149 had more N transportation from roots to leaves, and remained relatively higher activities of nitrate reductase (NR, EC.1.7.1.1) and glutamine synthetase (GS, EC.6.3.1.2) in leaves than other two genotypes, ensuring its higher capacity of N assimilation and utilization. The ionome analysis showed that LN stress had a significant effect on tissue ionome and the effect was genotypic and tissue-specific difference. On the whole, XZ149 maintained more stable Mn and Cu contents in roots, and less reduction of root P, K and Ca contents than XZ56 and ZD9 when exposed to LN stress. It may be assumed that more N movement into shoots, greater N assimilating capacity and specific rearrangement of nutrient element levels in tissues under LN stress are attributed to LN tolerance in XZ149.


Assuntos
Hordeum/fisiologia , Metabolômica , Nitrogênio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Genótipo , Glutamato-Amônia Ligase/metabolismo , Hordeum/efeitos dos fármacos , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Íons/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Análise de Componente Principal , Solubilidade
20.
J Plant Physiol ; 206: 59-67, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693987

RESUMO

Nitrogen (N) is an essential macronutrient for plants. The increasingly severe environmental problems caused by N fertilizer application urge alleviation of N fertilizer dependence in crop production. In previous studies, we identified the Tibetan wild barley accessions with high tolerance to low nitrogen (LN). In this study, metabolic analysis was done on two wild genotypes (XZ149, tolerant and XZ56, sensitive) to understand the mechanism of LN tolerance, using a hydroponic experiment. Leaf and root samples were taken at seven time points within 18 d after LN treatment, respectively. XZ149 was much less affected by low N stress than XZ56 in plant biomass. A total of 51 differentially accumulated metabolites were identified between LN and normal N treated plants. LN stress induced tissue-specific changes in carbon and nitrogen partitioning, and XZ149 had a pattern of energy-saving amino acids accumulation and carbon distribution in favor of root growth that contribute to its higher LN tolerance. Moreover, XZ149 is highly capable of producing energy and maintaining the redox homeostasis under LN stress. The current results revealed the mechanisms underlying the wild barley in high LN tolerance and provided the valuable references for developing barley cultivars with LN tolerance.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Hidroponia , Metabolômica/métodos , Nitrogênio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Análise por Conglomerados , Genótipo , Hordeum/efeitos dos fármacos , Hordeum/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Análise de Componente Principal , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...