Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6316, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060325

RESUMO

Cu catalyses electrochemical CO2 reduction to valuable multicarbon products but understanding the structure-function relationship has remained elusive due to the active Cu sites being heterogenized and under dynamic re-construction during electrolysis. We herein coordinate Cu with six phenyl-1H-1,2,3-triazole derivatives to form stable coordination polymer catalysts with homogenized, single-site Cu active sites. Electronic structure modelling, X-ray absorption spectroscopy, and ultraviolet-visible spectroscopy show a widely tuneable Cu electronics by modulating the highest occupied molecular orbital energy of ligands. Using CO diffuse reflectance Fourier transform infrared spectroscopy, in-situ Raman spectroscopy, and density functional theory calculations, we find that the binding strength of *CO intermediate is positively correlated to highest occupied molecular orbital energies of the ligands. As a result, we enable a tuning of C-C coupling efficiency-a parameter we define to evaluate the efficiency of C2 production-in a broad range of 0.26 to 0.86. This work establishes a molecular platform that allows for studying structure-function relationships in CO2 electrolysis and devises new catalyst design strategies appliable to other electrocatalysis.

2.
Angew Chem Int Ed Engl ; : e202407612, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007237

RESUMO

The synthesis of multicarbon (C2+) products remains a substantial challenge in sustainable CO2 electroreduction owing to the need for sufficient current density and faradaic efficiency alongside carbon efficiency. Herein, we demonstrate ampere-level high-efficiency CO2 electroreduction to C2+ products in both neutral and strongly acidic (pH = 1) electrolytes using a hierarchical Cu hollow-fiber penetration electrode (HPE). High concentration of K+ could concurrently suppress hydrogen evolution reaction and facilitate C-C coupling, thereby promoting C2+ production in strong acid. By optimizing the K+ and H+ concentration and CO2 flow rate, a faradaic efficiency of 84.5% and a partial current density as high as 3.1 A cm-2 for C2+ products, alongside a single-pass carbon efficiency of 81.5% and stable electrolysis for 240 h were demonstrated in a strong acidic solution of H2SO4 and KCl (pH = 1). Experimental measurements and density functional theory simulations suggested that tensile-strained Cu HPE enhances the asymmetric C-C coupling to steer the selectivity and activity of C2+ products.

3.
Angew Chem Int Ed Engl ; : e202410734, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958047

RESUMO

Since the discovery in 2000, conversion-type materials have emerged as a promising negative-electrode candidate for next-generation batteries with high capacity and tunable voltage, limited by low reversibility and severe voltage hysteresis. Heterogeneous construction stands out as a cost-effective and efficient approach to reducing reaction barriers and enhancing energy density. However, the second term introduced by conventional heterostructure inevitably complicates the electrochemical analysis and poses great challenges to harvesting systematic insights and theoretical guidance. A model cell is designed and established herein for the conversion reactions between Na and TMSA-SnO2, where TMSA-SnO2 represents single atom modification of eight different 3d transition elements (V, Cr, Mn, Fe, Co, Ni, Cu or Zn). Such a model unit fundamentally eliminates the interference from the second phase and thus enables independent exploration of activation manifestations of the heterogeneous architecture. For the first time, a thermodynamically dependent catalytic effect is proposed and verified through statistical data analysis. The mechanism behind the unveiled catalytic effect is further elucidated by which the active d orbitals of transition metals weaken the surface covalent bonds and lower the reaction barriers. This research provides both theoretical insights and practical demonstrations of the advanced heterogeneous electrodes.

4.
Chemistry ; 30(38): e202400651, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705845

RESUMO

Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER) and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. The optimal candidate (350-IrO2) demonstrates remarkable electrocatalytic activity and stability during the OER, presenting a promising advancement for efficient PEMWE. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr -1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.

5.
Adv Mater ; 36(26): e2401857, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594018

RESUMO

Defect-engineered bimetallic oxides exhibit high potential for the electrolysis of small organic molecules. However, the ambiguity in the relationship between the defect density and electrocatalytic performance makes it challenging to control the final products of multi-step multi-electron reactions in such electrocatalytic systems. In this study, controllable kinetics reduction is used to maximize the oxygen vacancy density of a Cu─Co oxide nanosheet (CuCo2O4 NS), which is used to catalyze the glycerol electrooxidation reaction (GOR). The CuCo2O4-x NS with the highest oxygen-vacancy density (CuCo2O4-x-2) oxidizes C3 molecules to C1 molecules with selectivity of almost 100% and a Faradaic efficiency of ≈99%, showing the best oxidation performance among all the modified catalysts. Systems with multiple oxygen vacancies in close proximity to each other synergistically facilitate the cleavage of C─C bonds. Density functional theory calculations confirm the ability of closely spaced oxygen vacancies to facilitate charge transfer between the catalyst and several key glycolic-acid (GCA) intermediates of the GOR process, thereby facilitating the decomposition of C2 intermediates to C1 molecules. This study reveals qualitatively in tuning the density of oxygen vacancies for altering the reaction pathway of GOR by the synergistic effects of spatial proximity of high-density oxygen vacancies.

6.
Small ; : e2402397, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634268

RESUMO

Optimizing the local electronic structure of electrocatalysts can effectively lower the energy barrier of electrochemical reactions, thus enhancing the electrocatalytic activity. However, the intrinsic contribution of the electronic effect is still experimentally unclear. In this work, the electron injection-incomplete discharge approach to achieve the electron accumulation (EA) degree on the nickel-iron layered double hydroxide (NiFe LDH) is proposed, to reveal the intrinsic contribution of EA toward oxygen evolution reaction (OER). Such NiFe LDH with EA effect results in only 262 mV overpotential to reach 50 mA cm-2, which is 51 mV-lower compared with pristine NiFe LDH (313 mV), and reduced Tafel slope of 54.8 mV dec-1 than NiFe LDH (107.5 mV dec-1). Spectroscopy characterizations combined with theoretical calculations confirm that the EA near concomitant Vo can induce a narrower energy gap and lower thermodynamic barrier to enhance OER performance. This study clarifies the mechanism of the EA effect on OER activity, providing a direct electronic structure modulation guideline for effective electrocatalyst design.

7.
Adv Mater ; 36(11): e2310273, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37974514

RESUMO

Cu2+ -based materials, a class of promising catalysts for the electrocatalytic carbon dioxide reduction reaction (CO2 RR) to value-added chemicals, usually undergo inevitable and uncontrollable reorganization processes during the reaction, resulting in catalyst deactivation or the new active sites formation and bringing great challenges to exploring their structure-performance relationships. Herein, a facile strategy is reported for constructing Cu2+ and 3, 4-ethylenedioxythiophene (EDOT) coordination to stabilize Cu2+ ions to prepare a novel layered coordination polymer (CuPEDOT). CuPEDOT enables selective reduction of CO2 to CH4 with 62.7% Faradaic efficiency at the current density of 354 mA cm-2 in a flow cell, and the catalyst is stable for at least 15 h. In situ spectroscopic characterization and theoretical calculations reveal that CuPEDOT catalyst can maintain the Cu2+ -EDOT coordination structurally stable in CO2 RR and significantly promote the further hydrogenation of *CO intermediates, favoring the formation of CH4 instead of dimerization to C2 products. The strong coordination between EDOT and Cu2+ prevents the reduction of Cu2+ ions during CO2 RR. The finding of this work provides a new perspective on designing molecularly stable, highly active catalysts for CO2 RR.

8.
ChemSusChem ; 17(7): e202301050, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38126956

RESUMO

Electrochemical nitrate reduction reaction (NO3RR) is a promising technology for ammonia production and denitrification of wastewater. Its application is seriously restricted by the development of the highly active and selective electrocatalyst and a rational electrolysis system. Here, we constructed an efficient electrochemical ammonia production process via nitrate reduction on the metallic Cu electrocatalyst when coupled with anodic sulfion oxidation reaction (SOR). The synthesized Cu catalyst delivers an excellent NH3 Faradaic efficiency of 96.0 % and a NH3 yield of 0.391 mmol h-1 cm-2 at -0.2 V vs. reversible hydrogen electrode, which mainly stem from the more favorable conversion of NO2 - to NH3 on Cu0. Importantly, the well-designed electrolysis system with cathodic NO3RR and anodic SOR achieves a dramatically reduced cell voltage of 0.8 V at 50 mA cm-2 in comparison with the one with anodic oxygen evolution reaction (OER) of 1.9 V. This work presents an effective strategy for the energy-saving ammonia production via constructing effective nitrate reduction catalyst and replacing the OER with SOR while removing the pollutants including nitrate and sulfion.

9.
ACS Nano ; 18(1): 1214-1225, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150422

RESUMO

By substituting the oxygen evolution reaction (OER) with the anodic urea oxidation reaction (UOR), it not only reduces energy consumption for green hydrogen generation but also allows purification of urea-rich wastewater. Spin engineering of the d orbital and oxygen-containing adsorbates has been recognized as an effective pathway for enhancing the performance of electrocatalysts. In this work, we report the fabrication of a bifunctional electrocatalyst composed of amorphous RuO2-coated NiO ultrathin nanosheets (a-RuO2/NiO) with abundant amorphous/crystalline interfaces for hydrogen evolution reaction (HER) and UOR. Impressively, only 1.372 V of voltage is required to attain a current density of 10 mA cm-2 over a urea electrolyzer. The increased oxygen vacancies in a-RuO2/NiO by incorporation of amorphous RuO2 enhance the total magnetization and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics. The density functional theory study reveals that the amorphous/crystalline interfaces promote charge-carrier transfer, and the tailored d-band center endows the optimized adsorption of oxygen-generated intermediates. This kind of oxygen vacancy induced spin-polarized electrons toward boosting HER and UOR kinetics and provides a reliable reference for exploration of advanced electrocatalysts.

10.
Nature ; 624(7992): 557-563, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913815

RESUMO

Perovskite solar cells with the formula FA1-xCsxPbI3, where FA is formamidinium, provide an attractive option for integrating high efficiency, durable stability and compatibility with scaled-up fabrication. Despite the incorporation of Cs cations, which could potentially enable a perfect perovskite lattice1,2, the compositional inhomogeneity caused by A-site cation segregation is likely to be detrimental to the photovoltaic performance of the solar cells3,4. Here we visualized the out-of-plane compositional inhomogeneity along the vertical direction across perovskite films and identified the underlying reasons for the inhomogeneity and its potential impact for devices. We devised a strategy using 1-(phenylsulfonyl)pyrrole to homogenize the distribution of cation composition in perovskite films. The resultant p-i-n devices yielded a certified steady-state photon-to-electron conversion efficiency of 25.2% and durable stability.

11.
J Phys Chem Lett ; 13(22): 4941-4948, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35635487

RESUMO

Colloidal semiconductor ternary CdTeS magic-size clusters (MSCs) have not been reported. Here, we present the first synthesis of CdTeS MSCs at room temperature and our understanding of the evolution pathway. The MSCs exhibit sharp optical absorption peaking at 381 nm and are labeled MSC-381. CdTeS MSC-381 evolves when pre-nucleation-stage samples of binary CdTe and CdS that do not contain quantum dots (QDs) are separately prepared and then mixed and incubated at room temperature. We propose that CdTeS MSC-381 evolves from its precursor compound (PC) via quasi-isomerization. Synchrotron-based small-angle X-ray scattering suggests that PCs/MSCs of CdTe and CdTeS are similar in sizes. We propose further that the CdTeS PC forms from the substitution reaction between the CdTe PC and the CdS monomer/fragment (Mo/Fr). The present study paves the way to the room-temperature evolution of ternary MSCs and provides an in-depth understanding of the PC to MSC transformation.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Telúrio , Temperatura
12.
J Phys Chem Lett ; 13(18): 3983-3989, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35481745

RESUMO

For those colloidal semiconductor CdSe nanospecies that exhibit sharp optical absorption doublets, different explanations have appeared in the literature regarding their morphological nature and formation, with no consensus reached. Here, we discuss the transformation pathway in two types of CdSe nanoplatelets (NPLs), from NPL-393 to NPL-460, exhibiting absorption doublets at 373/393 and 433/460 nm, respectively. Synchrotron-based small/wide-angle X-ray scattering (SAXS/WAXS) was performed to monitor the in situ transformation associated with the temperature. Combining the results of SAXS/WAXS, optical spectroscopy, and transmission electron microscopy, we propose that the transformation pathway experiences corresponding magic-sized clusters (MSCs), which display similar optical properties but with zero-dimensional structure. From stacked NPL-393 to stacked NPL-460, the transformation goes through sequentially individual NPL-393, MSC-393, MSC-460, and individual NPL-460 at their corresponding characteristic temperature. The present findings provide compelling evidence that both MSCs and their assembled NPLs exhibit similar optical absorption.

13.
Nat Commun ; 13(1): 126, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013240

RESUMO

The fundamental relationships between the structure and properties of liquids are far from being well understood. For instance, the structural origins of many liquid anomalies still remain unclear, but liquid-liquid transitions (LLT) are believed to hold a key. However, experimental demonstrations of LLTs have been rather challenging. Here, we report experimental and theoretical evidence of a second-order-like LLT in molten tin, one which favors a percolating covalent bond network at high temperatures. The observed structural transition originates from the fluctuating metallic/covalent behavior of atomic bonding, and consequently a new paradigm of liquid structure emerges. The liquid structure, described in the form of a folded network, bridges two well-established structural models for disordered systems, i.e., the random packing of hard-spheres and a continuous random network, offering a large structural midground for liquids and glasses. Our findings provide an unparalleled physical picture of the atomic arrangement for a plethora of liquids, shedding light on the thermodynamic and dynamic anomalies of liquids but also entailing far-reaching implications for studying liquid polyamorphism and dynamical transitions in liquids.

14.
Inorg Chem ; 60(23): 17565-17578, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34738803

RESUMO

The solution chemistry of Mo(VI) and W(VI) in mixtures of sulfuric and phosphoric acids is relevant to the development of practicable hydrometallurgical processes for the recovery and separation of these two elements from low-grade scheelite ores. The behavior of Mo(VI) and W(VI) in such mixtures has been studied using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), nuclear magnetic resonance (NMR), and small-angle X-ray scattering (SAXS) spectroscopies, along with electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). Where applicable, these techniques have produced a self-consistent picture of the similarities and differences between the chemical speciation of Mo(VI) and W(VI) as functions of solution composition, mostly at a constant phosphorous/metal (P/M; M = Mo(VI) or W(VI)) ratio of ∼1. In dilute acidic media (0.02 mol·kg-1 H+, without H2SO4), Mo(VI) exists mostly (∼60%) as P2Mo5O236- with the remaining ∼40% as ß-Mo8O264-. Under the same conditions, W(VI) is largely present as NaPW11O396- (∼80%) and P2W5O236- (∼10%), with the remainder probably occurring as isopolytungstates such as W12O4212- and some tungstophosphate dimers such as P2W18O626-. At higher acid concentrations (≲5 mol·kg-1 H2SO4), polymeric Mo(VI) anions are broken down to form the oxocations MoO22+ and Mo2O52+ and their protonated forms, with the dimers becoming increasingly dominant at higher acidities (∼80% in 5 mol·kg-1 H2SO4). In stark contrast, W(VI) polyanions do not decompose at higher acidities but instead form (∼70% in 0.6 mol·kg-1 H2SO4) a Keggin ion, PW12O403-. Further acidification with H2SO4 results in the agglomeration of this Keggin ion, forming clusters of about 50 and 100 Å in diameter that ultimately produce crystalline precipitates, which could be identified in part by their X-ray diffraction patterns. Possible application of these findings to the hydrometallurgical separation of Mo and W using acidic solutions is briefly discussed, based on a limited number of batch solvent extractions.

15.
Mol Syndromol ; 12(3): 148-153, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34177430

RESUMO

Hailey-Hailey disease (HHD) is a rare autosomal dominant genodermatosis. It is characterized clinically by recurrent erosions, blisters and erythematous plaques at the sites of friction and intertriginous areas. The pathogenic gene of HHD was reported to be the ATPase calcium-transporting type 2C member 1 gene (ATP2C1). In this study, genomic DNA polymerase chain reaction (PCR) and direct sequencing of ATP2C1 were performed from 3 Chinese pedigrees and 4 sporadic cases of HHD. We detected 3 heterozygous mutations, including 2 novel mutations (c.1673_1674insGTTG and c.2225A>G) and 1 recurrent nonsense mutation (c.1402C>T; NM_014382.4). The ATP2C1 gene was also screened in the asymptomatic members of pedigrees. Our results would further expand the mutation spectrum of the ATP2C1 gene and be helpful in the genetic counseling of patients with HHD.

16.
Angew Chem Int Ed Engl ; 60(37): 20358-20365, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960093

RESUMO

Divergent interpretations have appeared in the literature regarding the structural nature and evolutionary behavior for photoluminescent CdSe nanospecies with sharp doublets in optical absorption. We report a comprehensive description of the transformation pathway from one CdSe nanospecies displaying an absorption doublet at 373/393 nm to another species with a doublet at 433/460 nm. These two nanospecies are zero-dimensional (0D) magic-size clusters (MSCs) with 3D quantum confinement, and are labeled dMSC-393 and dMSC-460, respectively. Synchrotron-based small-angle X-ray scattering (SAXS) returns a radius of gyration of 0.92 nm for dMSC-393 and 1.14 nm for dMSC-460, and indicates that both types are disc shaped with the exponent of the SAXS form factor equal to 2.1. The MSCs develop from their unique counterpart precursor compounds (PCs), which are labeled PC-393 and PC-460, respectively. For the dMSC-393 to dMSC-460 transformation, the proposed PC-enabled pathway is comprised of three key steps, dMSC-393 to PC-393 (Step 1), PC-393 to PC-460 (Step 2 involving monomer addition), and PC-460 to dMSC-460 (Step 3). The present study provides a framework for understanding the PC-based evolution of MSCs and how PCs enable transformations between MSCs.

17.
Front Microbiol ; 11: 579719, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133047

RESUMO

Continuous cropping (CC) restricts the development of the medicinal plant cultivation industry because it alters soil properties and the soil microbial micro-ecological environment. It can also lead to reductions in the chemical contents of medicinal plants. In this study, we intercropped continuously cropped Pogostemon cablin (patchouli) with turmeric or ginger. High-throughput sequencing was used to study the soil bacteria and fungi. Community composition, diversity, colony structure, and colony differences were also analyzed. A redundancy analysis (RDA) was used to study the interactions between soil physical and chemical factors, and the bacteria and fungi. The correlations between the soil community and the soil physical and chemical properties were also investigated. The results showed that intercropping turmeric and ginger with patchouli can improve soil microbial abundance, diversity, and community structure by boosting the number of dominant bacteria, and by improving soil bacterial metabolism and the activities of soil enzymes. They also modify the soil physical and chemical properties through changes in enzyme activity, soil pH, and soil exchangeable Ca (Ca). In summary, turmeric and ginger affect the distribution of dominant bacteria, and increase the contents of the active ingredient in patchouli. The results from this study suggested that the problems associated with continuously cropping patchouli can be ameliorated by intercropping it with turmeric and ginger.

18.
Angew Chem Int Ed Engl ; 59(39): 16943-16952, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32558096

RESUMO

Little is known about the pathway of room-temperature formation of ternary CdTeSe magic-size clusters (MSCs) obtained by mixing binary CdTe and CdSe induction period samples containing binary precursor compounds (PCs) of MSCs, monomers (Ms), and fragments (Fs). Also, unestablished are dispersion effects that occur when as-mixed samples (without incubation) are placed in toluene (Tol) and octylamine (OTA) mixtures. The resulting ternary MSCs, exhibiting a sharp optical absorption peak at 399 nm, are labelled CdTeSe MSC-399, and their PCs are referred to as CdTeSe PC-399. When the amount of OTA is relatively small, single-ensemble MSC-399 evolved without either binary CdTe or CdSe MSCs. When the OTA amount is relatively large, CdTe MSC-371 appeared initially and then disappeared, while single-ensemble MSC-399 developed more deliberately. The larger the OTA amount, the more slowly these changes proceeded. The substitution reaction of CdTe PC + CdSe M/F↔CdTeSe PC-399 + CdTe M/F is proposed to be rate-determining for the MSC-399 formation in a Tol and OTA mixture. This study provides further understanding of the transformation pathway between MSCs.

19.
Chem Commun (Camb) ; 56(13): 2031-2034, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31965120

RESUMO

The whole evolution processes, from precursors to quantum dots (QDs), were in situ investigated by SAXS and UV-vis. Diphenylphosphine (HPPh2) accelerates the dissolution of zinc oleate lamellar mesophase in the presence of selenide tri-n-octylphosphine (SeTOP) at a low temperature of 40 °C via the equilibrium of SeTOP + HPPh2 ⇔ SePPh2H + TOP.

20.
Nat Commun ; 10(1): 1674, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976002

RESUMO

Alloy semiconductor magic-size clusters (MSCs) have received scant attention and little is known about their formation pathway. Here, we report the synthesis of alloy CdTeSe MSC-399 (exhibiting sharp absorption peaking at 399 nm) at room temperature, together with an explanation of its formation pathway. The evolution of MSC-399 at room temperature is detected when two prenucleation-stage samples of binary CdTe and CdSe are mixed, which are transparent in optical absorption. For a reaction consisting of Cd, Te, and Se precursors, no MSC-399 is observed. Synchrotron-based in-situ small angle X-ray scattering (SAXS) suggests that the sizes of the two samples and their mixture are similar. We argue that substitution reactions take place after the two binary samples are mixed, which result in the formation of MSC-399 from its precursor compound (PC-399). The present study provides a room-temperature avenue to engineering alloy MSCs and an in-depth understanding of their probable formation pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...