Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 10(4)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30966409

RESUMO

This paper reports a finite element (FE) analysis of three-dimensional (3D) auxetic textile composite by using commercial software ANSYS 15 under compression. The two-dimensional (2D) FE model was first developed and validated by experiment. Then, the validated model was used to evaluate effects of structural parameters and constituent material properties. For the comparison, 3D non-auxetic composite that was made with the same constituent materials and structural parameters, but with different yarn arrangement in the textile structure was also analyzed at the same time. The analysis results showed that the auxetic and non-auxetic composites have different compression behaviors and the auxetic composite has better the energy absorption capacity than the non-auxetic composite under the same compression stress. The study has provided us a guidance to design and fabricate auxetic composites with the required mechanical behavior by appropriately selecting structural parameters and constituent materials.

2.
Small ; 12(28): 3827-36, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27280488

RESUMO

A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PEDOT: PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications.


Assuntos
Técnicas Biossensoriais/métodos , Movimento (Física) , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Humanos
3.
Adv Sci (Weinh) ; 2(3): 1400021, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-27980925

RESUMO

Elastomeric petals directly replicated from natural rose petal are new versatile substrates for stretchable and printable electronics. Compared with conventional flat polydimethylsiloxane substrates, elastomeric petals have biomimicking topographic surfaces that can effectively inhibit the propagation of microcracks formed in the conducting layer, which is deposited on top, regardless of the type of conductive materials and the deposition methods.

4.
Adv Mater ; 26(5): 810-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307070

RESUMO

Three-dimensional (3D) conductive composites with remarkable flexibility, compressibility, and stretchability are fabricated by solution deposition of thin metal coatings on chemically modified, macroscopically continuous, 3D polyurethane sponges, followed by infiltration of the metallic sponges with polydimethylsiloxane (PDMS). These low-cost conductive composites are used as high-performance interconnects for flexible and stretchable light-emitting diode (LED) arrays, even with severe surface abrasion or cutting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...