Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(4): 332, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950078

RESUMO

The roles of cyclin-dependent kinase 6 (CDK6) in various cancers, including small cell lung carcinoma (SCLC), remain unclear. Here, 111,54 multi-center samples were investigated to determine the expression, clinical significance, and underlying mechanisms of CDK6 in 34 cancers. The area under the curve (AUC), Cox regression analysis, and the Kaplan-Meier curves were used to explore the clinical value of CDK6 in cancers. Gene set enrichment analysis and correlation analysis were performed to detect potential CDK6 mechanisms. CDK6 expression was essential in 24 cancer cell types. Abnormal CDK6 expression was observed in 14 cancer types (e.g., downregulated in breast invasive carcinoma; p < 0.05). CDK6 allowed six cancers to be distinguished from their controls (AUC > 0.750). CDK6 expression was a prognosis marker for 13 cancers (e.g., adrenocortical carcinoma; p < 0.05). CDK6 was correlated with several immune-related signaling pathways and the infiltration levels of certain immune cells (e.g., CD8+ T cells; p < 0.05). Downregulated CDK6 mRNA and protein levels were observed in SCLC (p < 0.05, SMD = - 0.90). CDK6 allowed the identification of SCLC status (AUC = 0.91) and predicted a favorable prognosis for SCLC patients (p < 0.05). CDK6 may be a novel biomarker for the prediction and prognosis of several cancers, including SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Neoplasias Pulmonares/patologia
2.
Front Psychol ; 13: 1067184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506958

RESUMO

Background: COVID-19 is now a global public health crisis with unprecedented political, economic, and social consequences affecting nations across the world. It also has a profound impact on the mobility of international students. When the COVID-19 was under control in China, and it was spreading dramatically in the United Kingdom, Chinese international students studying in the United Kingdom have been caught in a double bind over whether to return home or not. Objective: This study aims to explore the factors that influenced Chinese international students' choices of return during the COVID-19 pandemic when the COVID-19 was under control in China, while it was spreading dramatically in the United Kingdom. Methods: Taking Chinese international students studying in the United Kingdom as an empirical case, this study used qualitative and quantitative research methods to explore the factors that influenced their choices of return. Based on the Rational Choice Theory and qualitative analysis of text data, this paper constructed the influencing factors model of returning to China. On this basis, we developed a questionnaire and collected data from 1,333 students in late April and early May 2020. Binary Logistic Regression with 95% CI for odds ratio (OR) was used to identify significant factors. Results: The reserve of epidemic prevention supplies (OR = 0.712), transportation expenses (OR = 0.618), and quarantine expenses (OR = 0.702) negatively affected the return choice of overseas students. The supply of daily necessities (OR = 1.495), the anti-epidemic policy of the United Kingdom (OR = 1.684), and the demand for job hunting after graduation (OR = 1.661) had positive effects. Conclusion: The institutional rationality had the biggest promoting effect, replaced development rationality, and became the most important factor for overseas students to return to China during the COVID-19 pandemic. Economic rationality, which has a significant negative effect, is the biggest obstacle to returning home. These conclusions have policy implications for governments' response to the COVID-19 epidemic and improvement of the quality of services for overseas students.

3.
BMC Pulm Med ; 22(1): 246, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751045

RESUMO

BACKGROUND: Cyclin-dependent kinase inhibitor 2C (CDKN2C) was identified to participate in the occurrence and development of multiple cancers; however, its roles in small cell lung carcinoma (SCLC) remain unclear. METHODS: Differential expression analysis of CDKN2C between SCLC and non-SCLC were performed based on 937 samples from multiple centers. The prognosis effects of CDKN2C in patients with SCLC were detected using both Kaplan-Meier curves and log-rank tests. Using receiver-operating characteristic curves, whether CDKN2C expression made it feasible to distinguish SCLC was determined. The potential mechanisms of CDKN2C in SCLC were investigated by gene ontology terms and signaling pathways (Kyoto Encyclopedia of Genes and Genomes). Based on 10,080 samples, a pan-cancer analysis was also performed to determine the roles of CDKN2C in multiple cancers. RESULTS: For the first time, upregulated CDKN2C expression was detected in SCLC samples at both the mRNA and protein levels (p of Wilcoxon rank-sum test < 0.05; standardized mean difference = 2.86 [95% CI 2.20-3.52]). Transcription factor FOXA1 expression may positively regulate CDKN2C expression levels in SCLC. High CDKN2C expression levels were related to the poor prognosis of patients with SCLC (hazard ratio > 1, p < 0.05) and showed pronounced effects for distinguishing SCLC from non-SCLC (sensitivity, specificity, and area under the curve ≥ 0.95). CDKN2C expression may play a role in the development of SCLC by affecting the cell cycle. Furthermore, the first pan-cancer analysis revealed the differential expression of CDKN2C in 16 cancers (breast invasive carcinoma, etc.) and its independent prognostic significance in nine cancers (e.g., adrenocortical carcinoma). CDKN2C expression was related to the immune microenvironment, suggesting its potential usefulness as a prognostic marker in immunotherapy. CONCLUSIONS: This study identified upregulated CDKN2C expression and its clinical significance in SCLC and other multiple cancers, suggesting its potential usefulness as a biomarker in treating and differentiating cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Prognóstico , Carcinoma de Pequenas Células do Pulmão/patologia , Microambiente Tumoral
4.
J Oncol ; 2022: 2010341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356257

RESUMO

The clinical progression of small-cell lung cancer (SCLC) remains pessimistic. The aim of the present study was to promote the understanding of the clinical significance and mechanism of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in SCLC. Wilcoxon tests, standardized mean difference (SMD), and Kruskal-Wallis tests were utilized to compare OGT level differences among the experimental and control groups. The univariate Cox regression analysis, Kaplan-Meier curves, and receiver operating characteristic curves were applied to determine OGT's clinical relevance in cancers. The Spearman correlation analysis and enrichment analysis were utilized to explore the underlying mechanisms of OGT in cancers. For the first time in the field, we provide an overview of OGT in 32 cancers using a large number of samples (n = 21,196), determining distinct OGT expression in 25 cancers and its prognosis effects in 12 cancers. Furthermore, using 950 samples from multiple sources, upregulated OGT was found in both mRNA and protein levels in SCLC (SMD = 0.93, 95% CI [0.24, 1.63]). Higher OGT levels represented a more unfavorable disease-free interval for SCLC patients (p < 0.001). The research also identified OGT expression as a potential marker for SCLC prediction (sensitivity = 0.79, specificity = 0.86, and AUC = 0.88). The high expression of OGT in SCLC may result from the positive regulation of two transcription factors-DEK and XRN2. We primarily investigated the underlying mechanisms of OGT in SCLC. Herein, based on the analyses from pan-cancer to SCLC, OGT demonstrated conspicuous clinical significance. OGT may be an underlying biomarker for the treatment and identification of some cancers, including SCLC.

5.
Opt Express ; 29(4): 5279-5294, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726067

RESUMO

In this work, we utilize three parallel optical reservoir computers to model three optical dynamic systems, respectively. Here, the three laser-elements in the response laser array with both delay-time feedback and optical injection are utilized as nonlinear nodes to realize three optical chaotic reservoir computers (RCs). The nonlinear dynamics of three laser-elements in the driving laser array are predictively learned by these three parallel RCs. We show that these three parallel reservoir computers can reproduce the nonlinear dynamics of the three laser-elements in the driving laser array with self-feedback. Very small training errors for their predictions can be realized by the optimization of two key parameters such as the delay-time and the interval of the virtual nodes. Moreover, these three parallel RCs to be trained will well synchronize with three chaotic laser-elements in the driving laser array, respectively, even when there are some parameter mismatches between the response laser array and the driving laser array. Our findings show that optical reservoir computing approach possibly provide a successful path for the realization of the high-quality chaotic synchronization between the driving laser and the response laser when their rate-equations imperfectly match each other.

6.
Opt Express ; 29(5): 7809-7824, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726275

RESUMO

We present a novel scheme for the accurate ranging for the multi-region in the rectangular-shape target using numbers of the chaotic x polarization components in the multiple parallel optically pumped spin-VCSELs with optical injection, where these chaotic x polarization components possess the attractive features of the uncorrelation in time and space under different optical injection strengths, and fast dynamic with femtosecond magnitude. Utilizing these features, the accurate ranging to the position vectors of the multi-region targets can be achieved by correlating the multi beams of the time-delay reflected chaotic polarization radar probe waveforms with their corresponding reference waveforms. The further investigations show that the ranging to the multi-region targets possesses very low relative error, which is less than 0.28%. Their range resolutions can be achieved as high as 0.9mm, and exhibit excellent strong anti-noise performance by the optimization of some key parameters such as the injection strength, the amplitude of external light, linear birefringence, spin relaxation rate. The precise ranging to the multi-region targets based on the multiple parallel optically pumped spin-VCSEL with optical injection offers interesting perspectives for the potential applications in quality detection of the multi-region surfaces.

7.
Opt Express ; 28(18): 25778-25794, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906862

RESUMO

We have developed a theory model for a three-element laser array where three lasers are laterally coupled using the coupled mode theory and Maxwell equations. New chaotic synchronization properties have been observed systematically in the master-slave configuration, consisting of the driving three-element laser array with self-feedback and the response three-element laser array subjected to the parallel injection or cross injection. Under the parallel injection, the dynamic evolutions of high-quality complete chaotic synchronization between laser elements in different parameter spaces seriously depend on the self-feedback mode of the driving laser elements, such as one, two and all of them with self-feedback. It is found that when only the driving middle one or all of the driving laser elements are subject to self-feedback, high-quality complete chaotic synchronization of all laser elements can be achieved in the same large region of the most of the parameter spaces. In addition, we report here for the first time (to our knowledge) the interestingly symmetrical properties of leader/ laggard chaotic synchronization in the configuration under the cross-injection. Namely, the leader/ laggard chaotic synchronization with high quality between laser elements periodically varies with the delay differences, under the key parameters limited to a certain range. The varying traces of these synchronizations are like sine wave. The mirror symmetry between the laggard chaotic synchronization with in-phase (anti-phase) and the leader one with in-phase (anti-phase) can be achieved by the optimization of the structural parameters of laser waveguides. With the optimization of the related operating parameters, for one of the side-lasers, its leader/ laggard chaotic synchronization can be achieved the anti-symmetry between in-phase and anti-phase. On the other hand, for two symmetrical side-lasers, their leader/ laggard chaotic synchronization with in-phase and anti-phase can reach the anti-symmetry.

8.
Opt Express ; 28(7): 10363-10377, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225623

RESUMO

We investigate the evolution of nonlinear dynamic behaviors of two polarization components (x-PC and y-PC), as well as the interplay of polarization bistability and injection strength in the vertical-cavity surface-emitting laser (VCSEL) with polarization-preserved optical injection. We explore a new threshold mechanism to judge two logic outputs encoded in different dynamic behaviors of the x-PC and y-PC emitted by the VCSEL with polarization-preserved optical injection. We demonstrate implementations of two parallel optical chaotic reset-set flip-flop operations and two parallel chaotic toggle flip-flop operations that are synchronized by a clock signal and response for as short as 1 ns bit time. We further observe the reconfiguration of these two kinds of flip-flop operations with clock synchronization in different time periods by controlling the duration-time of the reset (toggle) signal with high-level. The probability of the correct trigger responses for these two kinds of flip-flop operations is controlled by the interplay of the duration-time of the reset (toggle) signal and the noise strength of the spontaneous emission. The probability that is equal to 1 for the reset-set flip-flop operations occurs in the long duration-time of the reset (toggle) signal ranging from 480 ps to 592 ps. The probability with 1 for the toggle flip-flop operations takes place in the short duration-time between 116 ps and 170 ps. Moreover, these two kinds of flip-flop operations have strong robust to the spontaneous emission noise. The optical chaotic flip-flop operation device with clock synchronization and reconfigurable trigger function proposed in our scheme offers interesting perspectives for applications where noise is unavoidable and synchronized multiple triggering is required.

9.
Opt Express ; 27(16): 23357-23367, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510614

RESUMO

We investigate the evolution of nonlinear dynamic behaviors of two polarization components (x-PC and y-PC), as well as the interplay of polarization bistability, frequency detuning and injection strength in the vertical cavity surface emitting laser with optical injection. Specifically, by encoding two logic inputs and one clock input in the amplitude of the light from a sampled grating distributed Bragg reflector laser, and by decoding two output logic responses from the x-PC and y-PC emitted by the laser, we demonstrate two parallel data-selection computing. The correct logic output encoded in two emitted PCs response for as short as 100 ps bit time and the response bit time of the correct logic output encoded in the y-PC may be 67 ps by the optimization of the injection strength. The probability of a correct response is controlled by the interplay of the bit time, the injection strength and noise strength, and is equal to 1 in a wide region of the injection strength and noise strength. The chaotic data-selection computing in an optically VCSEL offer interesting perspectives for applications where noise is unavoidable and fast switching is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...