Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virol J ; 19(1): 103, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710544

RESUMO

BACKGROUND: As a new epi-center of COVID-19 in Asia and a densely populated developing country, Indonesia is facing unprecedented challenges in public health. SARS-CoV-2 lineage B.1.466.2 was reported to be an indigenous dominant strain in Indonesia (once second only to the Delta variant). However, it remains unclear how this variant evolved and spread within such an archipelagic nation. METHODS: For statistical description, the spatiotemporal distributions of the B.1.466.2 variant were plotted using the publicly accessible metadata in GISAID. A total of 1302 complete genome sequences of Indonesian B.1.466.2 strains with high coverage were downloaded from the GISAID's EpiCoV database on 28 August 2021. To determine the molecular evolutionary characteristics, we performed a time-scaled phylogenetic analysis using the maximum likelihood algorithm and called the single nucleotide variants taking the Wuhan-Hu-1 sequence as reference. To investigate the spatiotemporal transmission patterns, we estimated two dynamic parameters (effective population size and effective reproduction number) and reconstructed the phylogeography among different islands. RESULTS: As of the end of August 2021, nearly 85% of the global SARS-CoV-2 lineage B.1.466.2 sequences (including the first one) were obtained from Indonesia. This variant was estimated to account for over 50% of Indonesia's daily infections during the period of March-May 2021. The time-scaled phylogeny suggested that SARS-CoV-2 lineage B.1.466.2 circulating in Indonesia might have originated from Java Island in mid-June 2020 and had evolved into two disproportional and distinct sub-lineages. High-frequency non-synonymous mutations were mostly found in the spike and NSP3; the S-D614G/N439K/P681R co-mutations were identified in its larger sub-lineage. The demographic history was inferred to have experienced four phases, with an exponential growth from October 2020 to February 2021. The effective reproduction number was estimated to have reached its peak (11.18) in late December 2020 and dropped to be less than one after early May 2021. The relevant phylogeography showed that Java and Sumatra might successively act as epi-centers and form a stable transmission loop. Additionally, several long-distance transmission links across seas were revealed. CONCLUSIONS: SARS-CoV-2 variants circulating in the tropical archipelago may follow unique patterns of evolution and transmission. Continuous, extensive and targeted genomic surveillance is essential.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Evolução Molecular , Genoma Viral , Genômica , Humanos , Indonésia/epidemiologia , Mutação , Filogenia , SARS-CoV-2/genética
2.
Front Public Health ; 9: 685315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395364

RESUMO

Background: The ongoing coronavirus disease 2019 (COVID-19) pandemic has posed an unprecedented challenge to public health in Southeast Asia, a tropical region with limited resources. This study aimed to investigate the evolutionary dynamics and spatiotemporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the region. Materials and Methods: A total of 1491 complete SARS-CoV-2 genome sequences from 10 Southeast Asian countries were downloaded from the Global Initiative on Sharing Avian Influenza Data (GISAID) database on November 17, 2020. The evolutionary relationships were assessed using maximum likelihood (ML) and time-scaled Bayesian phylogenetic analyses, and the phylogenetic clustering was tested using principal component analysis (PCA). The spatial patterns of SARS-CoV-2 spread within Southeast Asia were inferred using the Bayesian stochastic search variable selection (BSSVS) model. The effective population size (Ne) trajectory was inferred using the Bayesian Skygrid model. Results: Four major clades (including one potentially endemic) were identified based on the maximum clade credibility (MCC) tree. Similar clustering was yielded by PCA; the first three PCs explained 46.9% of the total genomic variations among the samples. The time to the most recent common ancestor (tMRCA) and the evolutionary rate of SARS-CoV-2 circulating in Southeast Asia were estimated to be November 28, 2019 (September 7, 2019 to January 4, 2020) and 1.446 × 10-3 (1.292 × 10-3 to 1.613 × 10-3) substitutions per site per year, respectively. Singapore and Thailand were the two most probable root positions, with posterior probabilities of 0.549 and 0.413, respectively. There were high-support transmission links (Bayes factors exceeding 1,000) in Singapore, Malaysia, and Indonesia; Malaysia involved the highest number (7) of inferred transmission links within the region. A twice-accelerated viral population expansion, followed by a temporary setback, was inferred during the early stages of the pandemic in Southeast Asia. Conclusions: With available genomic data, we illustrate the phylogeography and phylodynamics of SARS-CoV-2 circulating in Southeast Asia. Continuous genomic surveillance and enhanced strategic collaboration should be listed as priorities to curb the pandemic, especially for regional communities dominated by developing countries.


Assuntos
COVID-19 , SARS-CoV-2 , Sudeste Asiático/epidemiologia , Teorema de Bayes , Genoma Viral/genética , Humanos , Filogenia
3.
Ann Transl Med ; 9(2): 133, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569435

RESUMO

BACKGROUND: Large cell neuroendocrine carcinoma (LCNEC) of the lung is a rare neuroendocrine neoplasm. Previous studies have shown that microRNAs (miRNAs) are widely involved in tumor regulation through targeting critical genes. However, it is unclear which miRNAs play vital roles in the pathogenesis of LCNEC, and how they interact with transcription factors (TFs) to regulate cancer-related genes. METHODS: To determine the novel TF-miRNA-target gene feed-forward loop (FFL) model of LCNEC, we integrated multi-omics data from Gene Expression Omnibus (GEO), Transcriptional Regulatory Relationships Unraveled by Sentence-Based Text Mining (TRRUST), Transcriptional Regulatory Element Database (TRED), and The experimentally validated microRNA-target interactions database (miRTarBase database). First, expression profile datasets for mRNAs (GSE1037) and miRNAs (GSE19945) were downloaded from the GEO database. Overlapping differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified through integrative analysis. The target genes of the FFL were obtained from the miRTarBase database, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed on the target genes. Then, we screened for key miRNAs in the FFL and performed gene regulatory network analysis based on key miRNAs. Finally, the TF-miRNA-target gene FFLs were constructed by the hypergeometric test. RESULTS: A total of 343 DEGs and 60 DEMs were identified in LCNEC tissues compared to normal tissues, including 210 down-regulated and 133 up-regulated genes, and 29 down-regulated and 31 up-regulated miRNAs. Finally, the regulatory network of TF-miRNA-target gene was established. The key regulatory network modules included ETS1-miR195-CD36, TAOK1-miR7-1-3P-GRIA1, E2F3-miR195-CD36, and TEAD1-miR30A-CTHRC1. CONCLUSIONS: We constructed the TF-miRNA-target gene regulatory network, which is helpful for understanding the complex LCNEC regulatory mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...