Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Translat ; 33: 55-69, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35228997

RESUMO

OBJECTIVE: Given the limitations of current anti-resorption agents for postmenopausal osteoporosis, there is a need for alternatives without impairing coupling crosstalk between bone resorption and bone formation ie. osteoclastogenesis. Puerarin, a unique C-glycoside isoflavonoid, was found to be able to prevent bone loss by inhibiting bone resorption, but the underlying mechanism was controversial. In this study, we investigated the effects of puerarin on osteoclastic differentiation, activation and bone resorption and its underlying molecular mechanism in vitro, and then evaluated the effects of puerarin on bone metabolism using an ovariectomized (OVX) rat model. METHODS: In vitro, the effect of puerarin on osteoclastic cytotoxicity, differentiation, apoptosis, activation and function were studied in raw 264.7 â€‹cells and mouse BMMs. Mechanistically, osteoclast-related makers were determined by RT-PCR, western blot, immunofluorescence, and kinase activity assay. In vivo, Micro-CT, histology, serum bone biomarker, and mechanical testing were used to evaluate the effects of puerarin on preventing osteoporosis. RESULTS: Puerarin significantly inhibited osteoclast activation and bone resorption, without affecting osteoclastogenesis or apoptosis. In terms of mechanism, the expressions of protein of integrin-ß3 and phosphorylations of Src, Pyk2 and Cbl were lower in puerarin group than those in the control group. Oral administration of puerarin prevented OVX-induced trabecular bone loss and significantly improved bone strength in rats. Moreover, puerarin significantly decreased trap positive osteoclast numbers and serum TRAP-5b, CTx1, without affecting bone formation rate. CONCLUSIONS: Collectively, puerarin prevented the bone loss in OVX rat through suppression of osteoclast activation and bone resorption, by inhibiting integrin-ß3-Pyk2/Cbl/Src signaling pathway, without affecting osteoclasts formation or apoptosis. TRANSLATIONAL POTENTIAL OF THIS ARTICLE: These results demonstrate the unique mechanism of puerarin on bone metabolism and provide a novel agent for prevention of postmenopausal osteoporosis.

2.
Biomaterials ; 279: 121216, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34739982

RESUMO

Osteochondral defect repair in osteoarthritis (OA) remains an unsolved clinical problem due to the lack of enough seed cells in the defect and chronic inflammation in the joint. To address this clinical need, we designed a bone marrow-derived mesenchymal stem cell (BMSC)-laden 3D-bioprinted multilayer scaffold with methacrylated hyaluronic acid (MeHA)/polycaprolactone incorporating kartogenin and ß-TCP for osteochondral defect repair within each region. BMSC-laden MeHA was designed to actively introduce BMSCs in situ, and diclofenac sodium (DC)-incorporated matrix metalloproteinase-sensitive peptide-modified MeHA was induced on the BMSC-laden scaffold as an anti-inflammatory strategy. BMSCs in the scaffolds survived, proliferated, and produced large amounts of cartilage-specific extracellular matrix in vitro. The effect of BMSC-laden scaffolds on osteochondral defect repair was investigated in an animal model of medial meniscectomy-induced OA. BMSC-laden scaffolds facilitated chondrogenesis by promoting collagen II and suppressed interleukin 1ß in osteochondral defects of the femoral trochlea. Congruently, BMSC-laden scaffolds significantly improved joint function of the injured leg with respect to the ground support force, paw grip force, and walk gait parameters. Therefore, this research demonstrates the potential of 3D-bioprinted BMSC-laden scaffolds to simultaneously inhibit joint inflammation and promote cartilage defect repair in OA joints.


Assuntos
Bioimpressão , Cartilagem Articular , Células-Tronco Mesenquimais , Alicerces Teciduais , Animais , Biomimética , Condrogênese , Colágeno , Impressão Tridimensional , Ratos , Engenharia Tecidual
3.
J Orthop Translat ; 28: 65-73, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33738239

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the therapeutic effects and mechanism of Qufeng Zhitong (QFZT)capsule for the treatment of osteoarthritis (OA) in a rat model. METHODS: 8-10-week-old male Sprague-Dawley rats were randomly divided into the sham group (vehicle-treated), OA group (vehicle-treated), high-dose, middle-dose, low-dose of QFZT capsule-treated groups. OA was induced by transecting the medial collateral ligament and the medial meniscus in the right limb. The Sprague-Dawley rats were treated daily for 12 weeks with different concentrations of QFZT capsule: low (QFZT-L, 128 â€‹mg/kg), medium (QFZT-M, 256.5 â€‹mg/kg), and high (QFZT-H, 513 â€‹mg/kg) by gavage administration for a period of 4 and 12 weeks respectively. Vehicle-treated rats served as controls and administered 0.5% Carboxymethyl Cellulose Sodium (CMC-Na) by gavage on the same schedule. Weekly measurement of dynamic weight-bearing capacity, grip strength, joint swelling was were performed to monitor the progression of disease for 3 weeks. After euthanasia, the knee joints were articular cartilage changes. Pro-inflammatory gene expression in synovial joints was examined to assess the bone and cartilage changes. Gene expression of pro-inflammatory cytokines in synovial joints was measured to determine the therapeutic effect of QFZT. RESULTS: 2 weeks after the treatment, the grip strength and weight-bearing capacity were significantly increased in the QFZT-M and QFZT-H groups, compared with the OA group. The joint widths were decreased significantly in the QFZT-L and QFZT- H groups, compared with the OA group as well. The mRNA level in the articular cartilage of knee joint of IL-1ß in the QFZT-L group and IL-6 in the QFZT-H group was significantly suppressed at week 4, compared with the OA group. The radiology score was significantly decreased in the QFZT-H group compared with the OA group 12 weeks after treatment. Furthermore, the rats on QFZT treatment decreased the progression of OA, which was characterised by decreased cartilage degradation. However, the bone changes were no different in OA group and QFZT groups. CONCLUSION: In a rat model of OA, QFZT capsule shows the tendency to reduce the destruction of cartilage, joint swelling and bone erosion which provides new evidence for the therapeutic potential of QFZT capsule in the treatment of OA in clinics. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: The QFZT capsule can improve the symptoms of the OA in rodent animal rats by attenuating pain and retarding cartilage damage. This study indicated that the QFZT capsule has the potential clinical application of in OA therapy.

4.
PLoS One ; 12(4): e0175465, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28406943

RESUMO

There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.


Assuntos
Densidade Óssea/fisiologia , Ácido Cítrico/metabolismo , Esmalte Dentário/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Osteogênese/fisiologia , Simportadores/metabolismo , Animais , Transportadores de Ácidos Dicarboxílicos/deficiência , Camundongos , Camundongos Knockout , Simportadores/deficiência
5.
J Bone Miner Res ; 22(12): 1924-32, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17708715

RESUMO

UNLABELLED: Overexpression of Wnt10b from the osteocalcin promoter in transgenic mice increases postnatal bone mass. Increases in osteoblast perimeter, mineralizing surface, and bone formation rate without detectable changes in pre-osteoblast proliferation, osteoblast apoptosis, or osteoclast number and activity suggest that, in this animal model, Wnt10b primarily increases bone mass by stimulating osteoblastogenesis. INTRODUCTION: Wnt signaling regulates many aspects of development including postnatal accrual of bone. Potential mechanisms for how Wnt signaling increases bone mass include regulation of osteoblast and/or osteoclast number and activity. To help differentiate between these possibilities, we studied mice in which Wnt10b is expressed specifically in osteoblast lineage cells or in mice devoid of Wnt10b. MATERIALS AND METHODS: Transgenic mice, in which mouse Wnt10b is expressed from the human osteocalcin promoter (Oc-Wnt10b), were generated in C57BL/6 mice. Transgene expression was evaluated by RNase protection assay. Quantitative assessment of bone variables was done by radiography, muCT, and static and dynamic histomorphometry. Mechanisms of bone homeostasis were evaluated with assays for BrdU, TUNEL, and TRACP5b activity, as well as serum levels of C-terminal telopeptide of type I collagen (CTX). The endogenous role of Wnt10b in bone was assessed by dynamic histomorphometry in Wnt10b(-/-) mice. RESULTS: Oc-Wnt10b mice have increased mandibular bone and impaired eruption of incisors during postnatal development. Analyses of femoral distal metaphyses show significantly higher BMD, bone volume fraction, and trabecular number. Increased bone formation is caused by increases in number of osteoblasts per bone surface, rate of mineral apposition, and percent mineralizing surface. Although number of osteoclasts per bone surface is not altered, Oc-Wnt10b mice have increased total osteoclast activity because of higher bone mass. In Wnt10b(-/-) mice, changes in mineralizing variables and osteoblast perimeter in femoral distal metaphyses were not observed; however, bone formation rate is reduced because of decreased total bone volume and trabecular number. CONCLUSIONS: High bone mass in Oc-Wnt10b mice is primarily caused by increased osteoblastogenesis, with a minor contribution from elevated mineralizing activity of osteoblasts.


Assuntos
Diferenciação Celular , Osteoblastos/metabolismo , Osteocalcina , Osteogênese , Células-Tronco/metabolismo , Proteínas Wnt/biossíntese , Fosfatase Ácida/biossíntese , Fosfatase Ácida/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Densidade Óssea/genética , Diferenciação Celular/genética , Proliferação de Células , Homeostase/genética , Humanos , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Incisivo/patologia , Isoenzimas/biossíntese , Isoenzimas/genética , Mandíbula/crescimento & desenvolvimento , Mandíbula/metabolismo , Mandíbula/patologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Tamanho do Órgão/genética , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Células-Tronco/patologia , Fosfatase Ácida Resistente a Tartarato , Transgenes , Proteínas Wnt/genética
6.
J Bone Miner Res ; 21(6): 855-64, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16753016

RESUMO

UNLABELLED: Transiliac bone biopsies were obtained from 55 women treated with teriparatide or placebo for 12-24 months. We report direct evidence that modeling bone formation at quiescent surfaces was present only in teriparatide-treated patients and bone formation at remodeling sites was higher with teriparatide than placebo. INTRODUCTION: Recombinant teriparatide [human PTH(1-34)], a bone formation agent for the treatment of osteoporosis when given once daily subcutaneously, increases biochemical markers of bone turnover and activation frequency in histomorphometry studies. MATERIALS AND METHODS: We studied the mechanisms underlying this bone-forming action of teriparatide at the basic multicellular unit by the appearance of cement lines, a method used to directly classify surfaces as modeling or remodeling osteons, and by the immunolocalization of IGF-I and IGF-II. Transiliac bone biopsies were obtained from 55 postmenopausal women treated with teriparatide 20 or 40 microg or placebo for 12-24 months (median, 19.8 months) in the Fracture Prevention Trial. RESULTS: A dose-dependent relationship was observed in modeling and mixed remodeling/modeling trabecular hemiosteons. Trabecular and endosteal hemiosteon mean wall thicknesses were significantly higher in both teriparatide groups than in placebo. There was a dose-dependent relationship in IGF-II immunoreactive staining at all bone envelopes studied. The greater local IGF-II presence after treatment with teriparatide may play a key role in stimulating bone formation. CONCLUSIONS: Direct evidence is presented that 12-24 months of teriparatide treatment induced modeling bone formation at quiescent surfaces and resulted in greater bone formation at remodeling sites, relative to placebo.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Ósteon/ultraestrutura , Fator de Crescimento Insulin-Like II/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Teriparatida/uso terapêutico , Idoso , Conservadores da Densidade Óssea/uso terapêutico , Remodelação Óssea/fisiologia , Osso e Ossos/química , Osso e Ossos/efeitos dos fármacos , Demografia , Relação Dose-Resposta a Droga , Feminino , Ósteon/crescimento & desenvolvimento , Humanos , Imuno-Histoquímica , Fator de Crescimento Insulin-Like II/química , Pós-Menopausa
7.
J Bone Miner Res ; 21(6): 910-20, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16753022

RESUMO

UNLABELLED: GSK-3, a component of the canonical Wnt signaling pathway, is implicated in regulation of bone mass. The effect of a small molecule GSK-3 inhibitor was evaluated in pre-osteoblasts and in osteopenic rats. GSK-3 inhibitor induced osteoblast differentiation in vitro and increased markers of bone formation in vitro and in vivo with concomitant increased bone mass and strength in rats. INTRODUCTION: Inactivation of glycogen synthase kinase -3 (GSK-3) leads to stabilization, accumulation, and translocation of beta-catenin into the nucleus to activate downstream Wnt target genes. To examine whether GSK-3 directly regulates bone formation and mass we evaluated the effect of 603281-31-8, a small molecule GSK-3 alpha/beta dual inhibitor in preosteoblastic cells and in osteopenic rats. MATERIALS AND METHODS: Murine mesenchymal C3H10T1/2 cells were treated with GSK-3 inhibitor (603281-31-8) and assayed for beta-catenin levels, activity of Wnt-responsive promoter, expression of mRNA for bone formation, and adipogenic markers and alkaline phosphatase activity. In vivo, 6-month-old rats were ovariectomized (OVX), allowed to lose bone for 1 month, and treated with GSK-3 inhibitor at 3 mg/kg/day orally for 60 days. At the end of treatment, BMD was measured by DXA, bone formation rate by histomorphometry, vertebral strength (failure in compression), and the expression levels of osteoblast-related genes by real-time PCR. RESULTS: Treatment of C3H10T1/2 cells with the GSK-3 inhibitor increased the levels of beta-catenin accompanied by activation of Wnt-responsive TBE6-luciferase reporter gene. This was associated with an increased expression of mRNA for bone sialoprotein (1.4-fold), collagen alpha1 (I) (approximately 2-fold), osteocalcin (1.2-fold), collagen alpha1(V) (1.5-fold), alkaline phosphatase (approximately 160-fold), and runx2 (1.6-fold), markers of the osteoblast phenotype and bone formation activity. Alkaline phosphatase mRNA expression paralleled alkaline phosphatase activity. The mRNA levels of collagens alpha1 (I), alpha1 (V), biglycan, osteonectin, and runx-2 increased on treatment with the GSK-3 inhibitor in rat femur compared with the OVX control. DXA analyses revealed significant increases in BMC and BMD in cancellous and cortical bone of OVX rats treated with GSK-3 inhibitor. This was associated with increased strength (peak load, energy, and stiffness) assessed by lumbar vertebra load to failure in compression. Histomorphometric analyses showed that 603281-31-8 robustly increased bone formation but did not exclude a small effect on osteoclasts (resorption). CONCLUSIONS: An orally active, small molecule GSK-3 inhibitor induced osteoblast differentiation and increased markers of bone formation in vitro, and increased markers of bone formation, bone mass, and strength in vivo, consistent with a role for the canonical Wnt pathway in osteogenesis.


Assuntos
Densidade Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Osteoblastos/efeitos dos fármacos , Administração Oral , Animais , Disponibilidade Biológica , Biomarcadores/análise , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacocinética , Feminino , Glicogênio Sintase Quinase 3 beta , Mesoderma , Camundongos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Suporte de Carga , Proteínas Wnt/metabolismo , beta Catenina/análise
8.
J Bone Miner Metab ; 23 Suppl: 62-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15984416

RESUMO

The skeletal efficacy of raloxifene (Ral) plus weekly teriparatide [recombinant human parathyroid hormone (1-34), TPTD] combinations relative to each treatment alone or sequentially were evaluated in osteopenic, ovariectomized rats. In the first study, 6-month-old Sprague-Dawley rats were ovariectomized (Ovx) and permitted to lose bone for 1 month before treatment for the following 3 months. Raloxifene (Ral, 1 mg/kg/day orally) was evaluated alone and in combination with TPTD (10 or 30 microg/kg/week) administered weekly by subcutaneous injection. QCT, biomechanical testing, and histomorphometry were used to quantitate skeletal effects. Weekly TPTD alone at either dose had no skeletal effect relative to Ovx. Daily Ral prevented further loss of vertebral bone mineral density (BMD), resulting in BMD that was significantly greater than Ovx, but significantly less than age-matched, sham-Ovx, vehicle controls (sham). The raloxifene plus 30 microg/kg/week TPTD group had vertebral BMD that was significantly greater than Ovx, Ral alone, and both TPTD dose-alone groups. Therefore, the Ral plus TPTD group completely restored bone mass to sham levels. Compression testing of lumbar vertebra L5 confirmed increased strength for both Ral plus TPTD combinations relative to Ovx, with strength not different from sham. Histomorphometry of the proximal tibial metaphysis showed that Ovx significantly increased eroded surface and bone formation compared to sham. Raloxifene treatment restored eroded surface and bone formation rate back to sham levels. Raloxifene plus TPTD at 30 microg/kg/week resulted in a significantly higher mineral appositional rate compared to Ral and sham, which was not different from Ovx and TPTD alone. Raloxifene plus TPTD at both doses had eroded surfaces that were significantly less than Ovx but not different from sham or Ral alone. In a sequential study, 6-month-old Ovx rats were permitted to develop osteopenia for 2 months before a daily TPTD 80 microg/kg/day subcutaneous injection was initiated. Following 2 months of TPTD treatment, animals were either (1) continued on TPTD, (2) discontinued from TPTD, (3) switched to Ral 3 mg/kg/day, oral, or 17 alpha-ethynyl estradiol (EE2) 0.1 mg/kg/day, oral, for another 2 months. Raloxifene and EE2 maintained most of TPTD-induced new bone in Ovx rats by preventing the increase in bone turnover rate after withdrawal of TPTD. Raloxifene also restored the elevated bone formation activity induced by TPTD to the level of sham. These data suggest that Ral and TPTD have complementary interactions in osteopenic, Ovx rats. Raloxifene inhibited bone resorption, and reduced high bone turnover without significantly retarding TPTD stimulation of bone formation activity.


Assuntos
Doenças Ósseas Metabólicas/tratamento farmacológico , Antagonistas de Estrogênios/administração & dosagem , Vértebras Lombares/fisiopatologia , Cloridrato de Raloxifeno/administração & dosagem , Teriparatida/administração & dosagem , Animais , Doenças Ósseas Metabólicas/patologia , Doenças Ósseas Metabólicas/fisiopatologia , Remodelação Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Injeções Subcutâneas , Vértebras Lombares/patologia , Ovariectomia , Ratos , Ratos Sprague-Dawley
9.
Endocrinology ; 144(5): 2008-15, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12697709

RESUMO

With the ready availability of several osteoporosis therapies, teriparatide [human PTH-(1-34)] is likely to be prescribed to postmenopausal women with prior exposure to agents that prevent bone loss, such as bisphosphonates, estrogen, or selective estrogen receptor modulators. Therefore, we evaluated the ability of once daily teriparatide to induce bone formation in ovariectomized (Ovx) rats with extended prior exposure to various antiresorptive agents, such as alendronate (ABP), 17 alpha-ethinyl estradiol (EE), or raloxifene (Ral). Sprague Dawley rats were Ovx and treated with ABP (28 microg/kg, twice weekly), EE (0.1 mg/kg per d), or Ral (1 mg/kg per d) for 10 months before switching to teriparatide 30 microg/kg per d for another 2 months. Analysis of the proximal tibial metaphysis showed that all three antiresorptive agents prevented ovariectomy-induced bone loss after 10 months, but were mechanistically distinct, as shown by histomorphometry. Before teriparatide treatment, ABP strongly suppressed activation frequency and bone formation rate to below levels in other treatment groups, whereas these parameters were not different from sham values for EE or Ral. Trabecular area for ABP, EE, and Ral were greater than that in Ovx controls. However, the trabecular bone effects of ABP were attributed not only to effects on the secondary spongiosa, but also to the preservation of primary spongiosa, which was prevented from remodeling. After 2 months of teriparatide treatment, lumbar vertebra showed relative bone mineral density increases of 18%, 7%, 11%, and 10% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Histomorphometry showed that trabecular area was increased by 105%, 113%, 36%, and 48% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Teriparatide enhanced mineralizing surface, mineral apposition rate, and bone formation rate in all groups. Compression testing of vertebra showed that teriparatide improved strength (peak load) and toughness in all groups to a proportionately similar extent compared with 10 month levels. These data showed a surprising ability of the rat skeleton to respond to teriparatide despite extensive pretreatment with ABP, EE, or Ral. Therefore, the mature skeleton of Ovx rats remains highly responsive to the appositional effects of teriparatide regardless of pretreatment status in terms of cancellous bone area or rate of bone turnover.


Assuntos
Alendronato/administração & dosagem , Etinilestradiol/administração & dosagem , Osteogênese/efeitos dos fármacos , Cloridrato de Raloxifeno/administração & dosagem , Teriparatida/farmacologia , Animais , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/prevenção & controle , Esquema de Medicação , Feminino , Fêmur/efeitos dos fármacos , Fêmur/fisiopatologia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/fisiopatologia , Resistência à Tração , Tíbia/efeitos dos fármacos , Tíbia/patologia , Fatores de Tempo
10.
J Bone Miner Res ; 17(12): 2256-64, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12469920

RESUMO

Long-term effects of a new selective estrogen receptor modulator (SERM) arzoxifene were examined in ovariectomized (OVX) rats. Arzoxifene was administered postoperatively (po) at 0.1 mg/kg per day or 0.5 mg/kg per day to 4-month-old rats, starting 1 week after OVX for 12 months. At study termination, body weights for arzoxifene groups were 16-17% lower than OVX control, which was caused by mainly reduced gain of fat mass. Longitudinal analysis of the proximal tibial metaphysis (PTM) by computed tomography (CT) at 0, 2, 4, 6,9, and 12 months showed that OVX induced a 22% reduction in bone mineral density (BMD) at 2 months, which narrowed to a 12% difference between sham-operated (sham) and OVX rats by 12 months. Both doses of arzoxifene prevented the OVX-induced decline in BMD. Histomorphometry of the PTM showed that arzoxifene prevented bone loss by reducing osteoclast number in OVX rats. Arzoxifene maintained bone formation indices at sham levels and preserved trabecular number above OVX controls. Micro-CT analysis of lumbar vertebrae showed similar preservation of BMD compared with OVX, which were not different from sham. Compression testing of the vertebra and three-point bending testing of femoral shaft showed that strength and toughness were higher for arzoxifene-treated animals compared with OVX animals. Arzoxifene reduced serum cholesterol by 44-59% compared with OVX. Uteri wet weight from arzoxifene animals was 38-40% of sham compared with OVX rats, which were 29% of sham. Histology of the uterine endometrium showed that cell heights from both doses of arzoxifene were not significantly different from OVX controls. In summary, treatment of OVX rats with arzoxifene for nearly one-half of a lifetime maintained beneficial effects on cholesterol and the skeleton. These data suggest that arzoxifene may be a useful therapeutic agent for osteoporosis in postmenopausal women.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Colesterol/sangue , Ovariectomia , Piperidinas/administração & dosagem , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Tiofenos/administração & dosagem , Animais , Peso Corporal , Feminino , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA