Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 917-925, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884226

RESUMO

Biological nitrogen (N) fixation is an important source of N in terrestrial ecosystems, but the response of soil microbial N fixation rate to N deposition in different forest ecosystems still remains uncertain. We conducted a field N addition experiment to simulate atmosphere N deposition in subtropical Pinus taiwanensis and Castanopsis faberi forests. We set up three levels of nitrogen addition using urea as the N source: 0 (control), 40 (low N), and 80 g N·hm-2·a-1(high N) to examine the chemical properties, microbial biomass C, enzyme activities, and nifH gene copies of top soils (0-10 cm). We also measured the microbial N fixation rate using the 15N labeling method. Results showed that N addition significantly reduced the soil microbial N fixation rate in the P. taiwanensis and C. faberi forests by 29%-33% and 10%-18%, respectively. Nitrogen addition significantly reduced N-acquiring enzyme (i.e., ß-1, 4-N-acetylglucosaminidase) activity and nifH gene copies in both forest soils. There was a significant positive correlation between the microbial N fixation rate and soil dissolved organic C content in the P. taiwanensis forest, but a significant negative relationship between the rate of soil microbial nitrogen fixation and NH4+-N content in the C. faberi forest. Overall, soil microbial N fixation function in the P. taiwanensis forest was more sensitive to N addition than that in the C. faberi forest, and the factors affecting microbial N fixation varied between the two forest soils. The study could provide insights into the effects of N addition on biological N fixation in forest ecosystems, and a theoretical basis for forest management.


Assuntos
Florestas , Fixação de Nitrogênio , Nitrogênio , Pinus , Microbiologia do Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Solo/química , Fagaceae/crescimento & desenvolvimento , China , Clima Tropical
2.
Sci Total Environ ; 912: 169740, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38160820

RESUMO

Biological N fixation (BNF) is an important N input process for terrestrial ecosystems. Long-term N application increases the availability of N, but may also lead to phosphorus (P) deficiency or an imbalance between N and P. Here, we performed a 5-year N application experiment in a subtropical Phyllostachys heterocycla forest in site and a P application experiment in vitro to investigate the effect of N application on the BNF rate and its regulatory factor. The BNF rate, nifH gene, free-living diazotrophic community composition and plant properties were measured. We found that N application suppressed the BNF rate and nifH gene abundance, whereas the BNF rate in soils with added P was significantly higher overall than that in soils without added P. Moreover, we identified a key diazotrophic assembly (Mod#2), primarily comprising Bradyrhizobium, Geobacter, Desulfovibrio, Anaeromyxobacter, and Pseudodesulfovibrio, which explained 77 % of the BNF rate variation. There was a significant positive correlation between the Mod#2 abundance and soil available P, and the random forest results showed that soil available P is the most important factor affecting the Mod#2 abundance. Our findings highlight the importance of soil P availability in regulating the activities of key diazotrophs, and thus increasing P supply may help to promote N accumulation and primary productivity through facilitating the BNF process in forest ecosystems.


Assuntos
Ecossistema , Fixação de Nitrogênio , Fixação de Nitrogênio/fisiologia , Nitrogênio/análise , Fósforo , Microbiologia do Solo , Solo , Poaceae
3.
Ying Yong Sheng Tai Xue Bao ; 34(1): 203-212, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799395

RESUMO

Soil microorganisms play an important role in the biogeochemical cycles of terrestrial ecosystems. How-ever, it is still unclear how the amount and duration of nitrogen (N) addition affect soil microbial community structure and whether there is a correlation between the changes in microbial community structure and their nutrient limi-tation status. In this study, we conducted an N addition experiment in a subtropical Pinus taiwanensis forest to simulate N deposition with three treatments: control (CK, 0 kg N·hm-2·a-1), low N (LN, 40 kg N·hm-2·a-1), and high N (HN, 80 kg N·hm-2·a-1). Basic soil physicochemical properties, phospholipid fatty acids content, and carbon (C), N and phosphorus (P) acquisition enzyme activities were measured after one and three years of N addition. The relative nutrient limitation status of soil microorganisms was analyzed using ecological enzyme stoichiometry. The results showed that one-year N addition did not affect soil microbial community structure. Three-year LN treatment significantly increased the contents of Gram-positive bacteria (G+), Gram-negative bacteria (G-), actinomycetes (ACT), and total phospholipid fatty acids (TPLFA), whereas three-year HN treatment did not significantly affect soil microbial community, indicating that bacteria and ACT might be more sensitive to N addition. Nitrogen addition exacerbated soil C and P limitation. Phosphorus limitation was the optimal explanatory factor for the changes in soil microbial community structure. It suggested that P limitation induced by N addition might be more beneficial for the growth of certain oligotrophic bacteria (e.g. G+) and the microorganisms participating in the P cycling (e.g. ACT), with consequences on soil microbial community structure of subtropical Pinus taiwanensis forest.


Assuntos
Microbiota , Pinus , Fósforo , Nitrogênio/análise , Solo/química , Biomassa , Microbiologia do Solo , Florestas , Fosfolipídeos , Ácidos Graxos , Bactérias , Carbono , China
4.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2619-2627, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384595

RESUMO

Priming effect (PE) plays an important role in regulating terrestrial soil carbon (C) cycling, but the impact of different C addition modes on the PE in subtropical forest ecosystems with increasing nitrogen (N) deposition is unclear. In this study, we investigated the effects of C addition patterns (single or repeated C addition) on soil PE by adding 13C-labeled glucose for 90 d in an incubation experiment with different levels of N application (0, 20, and 80 kg N·hm-2·a-1). The different patterns of glucose addition significantly increased soil organic C (SOC) mineralization and produced positive PE. Single glucose addition resulted in stronger PE than repeated addition. PE was significantly weakened with increasing N application levels, indicating that N deposition inhibited soil excitation in Phyllostachys edulis forests. The cumulative PE was significantly negatively correlated with ß-N-acetylaminoglucosidase (NAG) and peroxidase (PEO) activities, and was significantly positively correlated with microbial biomass P (MBP) and potential of hydrogen (pH). Our findings indicated that, when acting together on soil, N application and C addition could strongly affect soil C stocks by stimulating the mineralization of native soil organic matter in subtropical forests. The findings further indicated that single C addition model might overestimate the effect of exogenous readily decomposable organic C on PE and ignore the effect of N deposition on PE, which in turn would overestimate the mineralization loss of forest SOC.


Assuntos
Carbono , Solo , Nitrogênio/farmacologia , Ecossistema , Florestas , Poaceae , Glucose
5.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2611-2618, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384594

RESUMO

As an important parameter regulating soil carbon mineralization, microbial carbon use efficiency (CUE) is essential for the understanding of carbon (C) cycle in terrestrial ecosystems. Three nitrogen supplemental levels, including control (0 kg N·hm-2·a-1), low nitrogen (40 kg N·hm-2·a-1), and high nitrogen (80 kg N·hm-2·a-1), were set up in a Castanopsis fabri forest in the Daiyun Mountain. The basic physical and chemical properties, organic carbon fractions, microbial biomass, and enzyme activities of the soil surface layer (0-10 cm) were measured. To examine the effects of increasing N deposition on microbial CUE and its influencing factors, soil microbial CUE was measured by the 18O-labelled-water approach. The results showed that short-term N addition significantly reduced microbial respiration rate and the activities of C and N acquisition enzymes, but significantly increased soil microbial CUE. ß-N-acetyl amino acid glucosidase (NAG)/microbial biomass carbon (MBC), microbial respiration rate, ß-glucosidase (BG)/MBC, cellulose hydrolase (CBH)/MBC, and soil organic carbon content were the main factors affecting CUE. Moreover, CUE significantly and negatively correlated with NAG/MBC, microbial respiration rate, BG/MBC, and CBH/MBC, but significantly and positively correlated with soil organic carbon. In summary, short-term N addition reduced the cost of soil microbial acquisition of C and N and microbial respiration, and thus increased soil microbial CUE, which would increase soil carbon sequestration potential of the C. fabri forest.


Assuntos
Carbono , Solo , Solo/química , Nitrogênio/análise , Microbiologia do Solo , Ecossistema , Florestas
6.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2178-2186, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36043825

RESUMO

Soil phosphatases are important in the mineralization of organophosphates and in the phosphorus (P) cycle. The kinetic mechanisms of phosphatases in response to nitrogen (N) deposition remain unclear. We carried out a field experiment with four different concentrations of N: 0 g N·hm-2·a-1(control), 20 g N·hm-2·a-1(low N), 40 g N·hm-2·a-1(medium N), and 80 g N·hm-2·a-1(high N) in a subtropical Moso bamboo forest. Soil samples were then collected from 0 to 15 cm depth, after 3, 5 and 7 years of N addition. We analyzed soil chemical properties and microbial biomass. Acid phosphatase (ACP) was investigated on the basis of maximum reaction velocity (Vm), Michaelis constant (Km), and catalytic efficiency (Ka). Results showed that N addition significantly decreased soil dissolved organic carbon (DOC), available phosphorus, and organophosphate content, but significantly increased soil ammonium, nitrate-N content, and Vm. There was a significant relationship between Vm and the concentrations of available phosphorus, organophosphate, and soil DOC. In general, N addition substantially increased Ka, but did not affect Km. The Km value in the high N treatment group was higher than that in the control group after five years of N addition. Km was significantly negatively associated with both available phosphorus and organophosphate. Medium and high N treatments had stronger effects on the kinetic parameters of ACP than low N treatment. Results of variation partition analysis showed that changes in soil chemical properties, rather than microbial biomass, dominated changes in Vm(47%) and Km(33%). In summary, N addition significantly affected substrate availability in Moso bamboo forest soil and modulated soil P cycle by regulating ACP kinetic parameters (especially Vm). The study would improve the understanding of the mechanisms underlying soil microorganisms-regulated soil P cycle under N enrichment. These mechanisms would identify the important parameters for improving soil P cycling models under global change scenarios.


Assuntos
Nitrogênio , Solo , Fosfatase Ácida , Carbono/análise , China , Florestas , Nitrogênio/análise , Organofosfatos , Monoéster Fosfórico Hidrolases , Fósforo/análise , Poaceae , Solo/química , Microbiologia do Solo
7.
Ying Yong Sheng Tai Xue Bao ; 33(1): 33-41, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35224923

RESUMO

Understanding changes in soil enzyme activities and ecoenzymatic stoichiometry is important for assessing soil nutrient availability and microbial nutrient limitation in mountain ecosystems. However, the variations of soil microbial nutrient limitation across elevational gradients and its driving factors in subtropical mountain forests are still unclear. In this study, we measured soil properties, microbial biomass, and enzyme activities related to carbon (C), nitrogen (N), and phosphorus (P) cycling in Pinus taiwanensis forests at different altitudes of Wuyi Mountains. By analyzing the enzyme stoichiometric ratio, vector length (VL), and vector angle (VA), the relative energy and nutrient limitation of soil microorganisms and its key regulatory factors were explored. The results showed that ß-glucosaminidase (BG) activities increased along the elevational gradient, while the activities of ß-N-acetyl glucosaminidase (NAG), leucine aminopeptidase (LAP), acid phosphatase (AcP) and (NAG+LAP)/microbial biomass carbon (MBC) and AcP/MBC showed the opposite trend. Enzyme C/N, enzyme C/P, enzyme N/P, and VL were enhanced with increasing elevation, while VA decreased, indicating a higher degree of microbial P limitation at low elevation and higher C limitation at high elevation. In addition, our results suggested that dissolved organic carbon and microbial biomass phosphorus are critical factors affecting the relative energy and nutrient limitation of soil microorganisms at different elevations. The results would provide a theoretical basis for the responses of soil carbon, nitrogen, and phosphorus availability as well as the relative limitation of microbial energy and nutrition to elevational gradients, and improve our understanding of soil biogeochemical cycle process in subtropical montane forest ecosystems.


Assuntos
Pinus , Solo , Carbono/análise , China , Ecossistema , Florestas , Nitrogênio/análise , Fósforo/análise , Microbiologia do Solo
8.
Ying Yong Sheng Tai Xue Bao ; 32(2): 521-528, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33650361

RESUMO

The activity and stoichiometry of soil extracellular enzyme can provide a good indication for changes in soil nutrient availability and microbial demands for nutrients. However, it remains unclear how would nitrogen (N) deposition affect nutrient limitation of microbes in subtropical forest soils. We conducted a 5 years N addition experiment in a subtropical Phyllostachys pubescens forest. The soil nutrients and enzyme activities associated with carbon (C), N, and phosphorus (P) cycles were measured. We also examined the nutrient distribution of microorganisms using enzyme stoichiometry and vector analysis. The results showed that N addition significantly decreased the contents of soil soluble organic C and available P and increased that of available N. Furthermore, N addition significantly decreased ß-N-acetyl-glucosaminidase (NAG) activity and NAG/ microbial biomass carbon (MBC), and increased acid phosphatase (ACP) and ACP/MBC. The low and moderate N addition levels significantly increased enzyme C/P, vector length, and vector angle, but significantly decreased enzyme N/P. Results of redundancy analysis showed that the change in soil enzyme activity and enzymatic stoichiometry were mainly driven by soil available P content under N addition. In summary, N addition altered the microbial nutrient acquisition strategy, which increased nutrient allocation to P-acquiring enzyme production but reduced that to N-acquiring enzyme production. Moreover, N addition exacerbated the C and P limitation of soil microorganisms. Appropriate amount of P fertilizer could be applied to improve soil fertility of subtropical P. pubescens forest in the future.


Assuntos
Nitrogênio , Fósforo , Carbono/análise , China , Florestas , Nitrogênio/análise , Fósforo/análise , Solo , Microbiologia do Solo
9.
PLoS One ; 16(2): e0246263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33621258

RESUMO

Nutrient addition to forest ecosystems significantly influences belowground microbial diversity, community structure, and ecosystem functioning. Nitrogen (N) addition in forests is common in China, especially in the southeast region. However, the influence of N addition on belowground soil microbial community diversity in subtropical forests remains unclear. In May 2018, we randomly selected 12 experimental plots in a Pinus taiwanensis forest within the Daiyun Mountain Nature Reserve, Fujian Province, China, and subjected them to N addition treatments for one year. We investigated the responses of the soil microbial communities and identified the major elements that influenced microbial community composition in the experimental plots. The present study included three N treatments, i.e., the control (CT), low N addition (LN, 40 kg N ha-1 yr-1), and high N addition (HN, 80 kg N ha-1 yr-1), and two depths, 0-10 cm (topsoil) and 10-20 cm (subsoil), which were all sampled in the growing season (May) of 2019. Soil microbial diversity and community composition in the topsoil and subsoil were investigated using high-throughput sequencing of bacterial 16S rDNA genes and fungal internal transcribed spacer sequences. According to our results, 1) soil dissolved organic carbon (DOC) significantly decreased after HN addition, and available nitrogen (AN) significantly declined after LN addition, 2) bacterial α-diversity in the subsoil significantly decreased with HN addition, which was affected significantly by the interaction between N addition and soil layer, and 3) soil DOC, rather than pH, was the dominant environmental factor influencing soil bacterial community composition, while AN and MBN were the best predictors of soil fungal community structure dynamics. Moreover, N addition influence both diversity and community composition of soil bacteria more than those of fungi in the subtropical forests. The results of the present study provide further evidence to support shifts in soil microbial community structure in acidic subtropical forests in response to increasing N deposition.


Assuntos
Florestas , Microbiota/efeitos dos fármacos , Nitrogênio/farmacologia , Microbiologia do Solo , Ecossistema , Microbiota/genética , Pinus , RNA Ribossômico 16S/genética , Clima Tropical
10.
Ying Yong Sheng Tai Xue Bao ; 31(3): 753-760, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32537969

RESUMO

Phosphorus (P) is an important nutrient for plant and microbial growth. Soil P availabi-lity is poor in subtropical areas. Long-term heavy nitrogen (N) deposition might further reduce P availability. The experiment was performed in a Phyllostachys pubescens forest in Daiyun Mountain. The effects of N application on soil basic physical and chemical properties, soil P fractions, microbial biomass, and acid phosphomonoesterase activity were analyzed after three years of N application. The results showed that N application significantly increased NO3--N content and thus soil N availability, while it significantly reduced the percentage of decomposable organic P to total P, with the ratio of carbon (C) to organic P being over 200. The soil microbial biomass C, microbial biomass P, acid phosphomonoesterase, and the ratio of microbial biomass N to microbial biomass P and microbial biomass C to microbial biomass P were increased as the N application rate increased. There was a significant negative correlation between the percentage of decomposable organic P to total P and microbial biomass P. Consequently, N application enhanced soil P limitation and increased microbial P demand.


Assuntos
Nitrogênio , Fósforo , Biomassa , Carbono , China , Florestas , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...