Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475587

RESUMO

Nuclear Factor Y (NF-Y) is a class of heterotrimeric transcription factors composed of three subunits: NF-A, NF-YB, and NF-YC. NF-YC family members play crucial roles in various developmental processes, particularly in the regulation of flowering time. However, their functions in petunia remain poorly understood. In this study, we isolated four PhNF-YC genes from petunia and confirmed their subcellular localization in both the nucleus and cytoplasm. We analyzed the transcript abundance of all four PhNF-YC genes and found that PhNF-YC2 and PhNF-YC4 were highly expressed in apical buds and leaves, with their transcript levels decreasing before flower bud differentiation. Silencing PhNF-YC2 using VIGS resulted in a delayed flowering time and reduced chlorophyll content, while PhNF-YC4-silenced plants only exhibited a delayed flowering time. Furthermore, we detected the transcript abundance of flowering-related genes involved in different signaling pathways and found that PhCO, PhGI, PhFBP21, PhGA20ox4, and PhSPL9b were regulated by both PhNF-YC2 and PhNF-YC4. Additionally, the transcript abundance of PhSPL2, PhSPL3, and PhSPL4 increased only in PhNF-YC2-silenced plants. Overall, these results provide evidence that PhNF-YC2 and PhNF-YC4 negatively regulate flowering time in petunia by modulating a series of flowering-related genes.

2.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361603

RESUMO

Nuclear Factor Y, Subunit C (NF-YC) transcription factors are conserved in most plants, and play essential roles in plant growth and development, especially in flowering regulation. Chrysanthemums are important commercial plants, and their market value is strongly impacted by flowering time. Until now, no details regarding the NF-YC family in the Chrysanthemum genus have been available. In this study, five NF-YC genes were cloned from Chrysanthemum indicum. Multiple alignments showed that CiNF-YCs had the highly conserved characteristic regions. Phylogenetic analyses identified a pair of paralogue NF-YC proteins in chrysanthemums. Gene structure and conserved motifs were also analyzed for functional understanding. According to the results of the expression experiments, CiNF-YC1 and CiNF-YC5 were mainly expressed in leaves or flowers, and their expression levels varied greatly from the seedling to flower bud differentiation stage. Arabidopsis overexpressing CiNF-YC1 and CiNF-YC3 showed significantly delayed flowering, accompanied by other morphological alterations. RT-qPCR analysis revealed that genes associated with photoperiod, vernalization, aging, and gibberellin pathways were downregulated in CiNF-YC1-OX lines, relative to the wild type, whereas in CiNF-YC3-OX lines, only SHORT VEGETATIVE PHASE (AtSVP), the key factor in the ambient temperature pathway, was upregulated. Taken together, these findings suggest that CiNF-YC1 and CiNF-YC3 negatively regulate flowering in Arabidopsis via different flowering pathways.


Assuntos
Arabidopsis , Chrysanthemum , Chrysanthemum/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Flores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 13: 890568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574085

RESUMO

Since the development of indica hybrid rice in the 1970s, great success has been achieved in hybrid rice production in China and around the world. The utilization of inter-subspecific indica-japonica hybrid rice has always been considered due to its stronger heterosis characteristics. However, indica-japonica hybrids face a serious problem of sterility, which hinders the exploitation of their heterosis. In the past decades, the genetic basis of indica-japonica hybrid sterility has been well studied. It was found that in sterile indica-japonica hybrids, female sterility was mainly controlled by the S5 locus and male sterility by the Sa, Sb, Sc, Sd, and Se loci. In this study, we developed wide-compatible indica lines (WCILs) by pyramiding multiple neutral (n) alleles of the hybrid sterility loci. First, we identified Sn alleles of the loci in single-segment substitution lines (SSSLs) in the genetic background of indica Huajingxian 74 (HJX74). Then, the Sn alleles of S5, Sb, Sc, Sd, and Se loci in SSSLs were pyramided in the HJX74 genetic background. The WCILs carrying Sn alleles at the S5, Sb, Sc, Sd, and Se loci showed wide compatibility with indica and japonica rice varieties. Therefore, the WCILs will be used to develop inter-subspecific indica-japonica hybrid rice with normal fertility.

4.
Front Plant Sci ; 13: 1029915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684754

RESUMO

Triploid is considered a reproductive barrier and also a bridge in the formation of polyploids. However, few reports are available in Cymbidium. In this study, diploid 'Xiaofeng', sexual triploid 'Yuchan' and 'Huanghe' of Cymbidium were used to evaluate hybridization compatibility of the triploids. Results showed that the sexual triploids were fertile whether they were used as male or female parents. 'Yuchan' produced male gametes of 1x, 1x~2x, 2x, 2x~3x, and 3x at frequencies of 8.89%, 77.78%, 6.67%, 3.33%, and 3.33%, respectively; while 'Huanghe' produced 3.33% 1x, 80.00% 1x~2x, 8.89% 2x, 5.56% 2x~3x, and 2.22% 3x male gametes. The cross of 'Xiaofeng' with 'Yuchan' produced progenies with a wide range of ploidy levels, including one diploid, 34 2×~3× aneuploids, 12 triploids, and one tetraploid, indicating that male gametes produced by sexual triploid were fertile and could be transmitted and fused with egg cells. On the other hand, 10 progenies obtained from the cross of 'Yuchan' × 'Xiaofeng' were all aneuploids. The cross of 'Yuchan' with 'Huanghe' produced 40 progenies including three 2×~3× aneuploids, nine 3×~4× aneuploids, 21 tetraploids, six 4×~5× aneuploids, and one pentaploid, suggesting that 2x gametes, instead of the unreduced ones played a more important role in the formation of tetraploids. The survival rates of the hybrids were all above 80.00%, with the tetraploids at 96.67%. Cytological analysis revealed that during meiosis of sexual polyploids, two chromosome sets of the 2n gamete were inclined to enter into the same daughter cell, resulting in the production of 2x gametes. Our results indicate that the triploid cymbidiums are not reproductive barrier but serve as a bridge in the formation of polyploid plants.

5.
Rice (N Y) ; 14(1): 103, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910270

RESUMO

Low-temperature germinability (LTG) is an important agronomic trait that can affect the planting time, planting area, and grain yield of staple crops, such as rice. However, the genetic mechanism of LTG is still unclear. In this study, a multi-parental permanent population with 208 single segment substitution lines (SSSLs) was used to conduct a genetic dissection for LTG across four cropping seasons. LTG was a typical quantitative trait with a high combined broad-sense heritability of 0.71. By comparison with the recipient parent, Huajingxian74, 24 SSSLs were identified as carrying LTG QTLs, which were further merged into integrated QTLs with shorter genetic distances by substitution mapping. Finally, 14 LTG QTLs were mapped on ten chromosomes, including seven positive-effect and seven negative-effect QTLs, with additive effect contributions ranging from 19.2 to 39.9%. qLTG3a, a main-effect and novel QTL, was confirmed by bulk segregant analysis using an F2 segregating population, and five key recombinants were selected to develop F3 populations for progeny testing. Marker-trait association analysis fine mapped qLTG3a to a 332.7-kb physical region between markers M6026 and M6341. Within this interval, 40 annotated genes were revealed, and three genes (Os03g0213300, Os03g0214400, and Os03g0214600) were considered as pivotal candidate genes for qLTG3a based on their sequence variations and expression patterns. Besides low temperature, qLTG3a can also enhance seed germination under standard temperature and osmotic stress. In summary, this study identified some genetic factors regulating LTG and opened a new window for breeding elite direct-seeded rice varieties. It will help reduce the climate risk in the production process of rice, which is of great significance to ensuring food security.

6.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068329

RESUMO

Anthurium is an important ornamental crop in the world market and its floral scent can enhance its ornamental value. To date, studies of the components and formation mechanism of the floral scent of Anthurium are relatively few. In this study, the scent profiles of two Anthurium varieties were measured by gas chromatograph-mass spectrometer (GC-MS). There were 32 volatile organic compounds (VOCs) identified in Anthurium 'Mystral', and the most abundant compound was eucalyptol (57.5%). Extremely small amounts of VOCs were detected in Anthurium 'Alabama'. Compared with A. 'Alabama', most genes related to floral scent synthesis exhibited a higher expression in A.'Mystral', including AaDXS, AaDXR, AaMDS, AaHDS, AaTPS, AaDAHPS, AaADT2, AaPAL1, and AaPAL2. In order to produce new varieties of Anthurium with fragrance, 454 progenies of two crossbred combinations of A. 'Mystral' and A. 'Alabama' were obtained. Four F1 generation plants with different floral scent intensities were selected for further study. The major components of floral scent in the progenies were similar to that of the parental A.'Mystral' plant. The expression patterns of genes related to floral scent synthesis were consistent with the relative contents of different types of VOCs. This study revealed the profiles of volatile compounds and associated gene expression in two Anthurium cultivars and their F1 hybrids, which provided a basis for the floral scent inheritance of Anthurium andraeanum.


Assuntos
Araceae/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Compostos Orgânicos Voláteis/análise , Vias Biossintéticas/genética , Segregação de Cromossomos/genética , Flores/química , Inflorescência/genética , Odorantes/análise , Fenótipo
7.
Theor Appl Genet ; 134(4): 1253-1262, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33492412

RESUMO

KEY MESSAGE: Through substitution mapping strategy, two pairs of closely linked QTLs controlling stigma exsertion rate were dissected from chromosomes 2 and 3 and the four QTLs were fine mapped. Stigma exsertion rate (SER) is an important trait affecting the outcrossing ability of male sterility lines in hybrid rice. This complex trait was controlled by multiple QTLs and affected by environment condition. Here, we dissected, respectively, two pairs of tightly linked QTLs for SER on chromosomes 2 and 3 by substitution mapping. On chromosome 2, two linkage QTLs, qSER-2a and qSER-2b, were located in the region of 1288.0 kb, and were, respectively, delimited to the intervals of 234.9 kb and 214.3 kb. On chromosome 3, two QTLs, qSER-3a and qSER-3b, were detected in the region of 3575.5 kb and were narrowed down to 319.1 kb and 637.3 kb, respectively. The additive effects of four QTLs ranged from 7.9 to 9.0%. The epistatic effect produced by the interaction of qSER-2a and qSER-2b was much greater than that of qSER-3a and qSER-3b. The open reading frames were identified within the maximum intervals of qSER-2a, qSER-2b and qSER-3a, respectively. These results revealed that there are potential QTL clusters for SER in the two regions of chromosome 2 and chromosome 3. Fine mapping of the QTLs laid a foundation for cloning of the genes of SER.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Flores/crescimento & desenvolvimento , Ligação Genética , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas , Flores/genética , Oryza/genética , Fenótipo
8.
Rice (N Y) ; 13(1): 37, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32519122

RESUMO

BACKGROUND: Stigma exsertion rate (SER) is a key determinant for the outcrossing ability of male sterility lines (MSLs) in hybrid rice seed production. In the process of domestication, the outcrossing ability of cultivated rice varieties decreased, while that of wild Oryza species kept strong. Here, we detected the quantitative trait loci (QTLs) controlling SER using a set of single-segment substitution lines (SSSLs) derived from O. glumaepatula, a wild Oryza species. RESULTS: Seven QTLs for SER were located on 5 chromosomes. qSER-1a and qSER-1b were located on chromosome 1. qSER-3a and qSER-3b were mapped on chromosome 3, and qSER-3b was further located at an estimated interval of 898.8 kb by secondary substitution mapping. qSER-5, qSER-9 and qSER-10 were identified on chromosomes 5, 9 and 10, respectively, and qSER-9 was delimited to an estimated region of 551.9 kb by secondary substitution mapping. The additive effects of the 7 QTLs ranged from 10.6% to 14.8%, which were higher than those of most loci for SER reported previously. CONCLUSIONS: qSER-1a and qSER-1b are novel loci for SER on chromosome 1. All of the 7 QTLs have major effects on SER. The major QTLs of SER will help to develop MSLs with strong outcrossing ability.

9.
Front Plant Sci ; 11: 558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499802

RESUMO

Polyploidy plays an important role in crop improvement. Polyploid plants, particularly those produced through unreduced gametes (2n gametes), show increased organ size, improved buffering capacity for deleterious mutations, and enhanced heterozygosity and heterosis. Induced polyploidy has been widely used for improving floriculture crops, however, there are few reported sexual polyploid plants in the floriculture industry. This study evaluated nine cultivars of Cymbidium Swartz and discovered that 2n male gametes occurred in this important orchid. Depending on cultivars, 2n male gamete formation frequencies varied from 0.15 to 4.03%. Interspecific hybrids generally produced more 2n male gametes than traditional cultivars. To generate sexual polyploid plants, seven pairs of crosses were made, which produced five triploid and two tetraploid hybrids. Two triploid hybrids were evaluated for in vitro regeneration and growth characteristics. Compared to the diploid parents, the triploids were more easily regenerated through rhizomes or protocorms, and regenerated plants had improved survival rates after transplanting to the greenhouse. Furthermore, the sexual polyploid plants had more compact growth style, produced fragrant flowers, and demonstrated heterosis in plant growth. Through this study, a reliable protocol for selection of appropriate parents for 2n gamete production, ploidy level evaluation, in vitro culture of polyploid progenies, and development of new polyploid cultivars was established. Our study with Cymbidium suggests that the use of 2n gametes is a viable approach for improving floriculture crops.

10.
Front Plant Sci ; 8: 1866, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163591

RESUMO

Cymbidium, one of the most important orchid genera in horticulture, can be classified into epiphytic and terrestrial species. Generally, epiphytic Cymbidium seedlings can be easily propagated by tissue culture, but terrestrial seedlings are difficult to propagate. To date, the molecular mechanisms underlying the differences in the ease with which terrestrial and epiphytic cymbidiums can be propagated are largely unknown. Using RNA-sequencing, quantitative reverse transcription PCR and enzyme-linked immunosorbent assay, Cymbidium 'Xiaofeng' (CXF), which can be efficiently micropropagated, and terrestrial Cymbidium sinense 'Qijianbaimo' (CSQ), which has a low regeneration ability, were used to explore the molecular mechanisms underlying the micropropagation ability of Cymbidium species. To this end, 447 million clean short reads were generated, and 31,264 annotated unigenes were obtained from 10 cDNA libraries. A total of 1,290 differentially expressed genes (DEGs) were identified between CXF and CSQ during shoot induction. Gene ontology (GO) enrichment analysis indicated that the DEGs were significantly enriched in auxin pathway-related GO terms. Further analysis demonstrated that YUC and GH3 family genes, which play crucial roles in the regulation of auxin/IAA (indole-3-acetic acid) metabolism, acted quickly in response to shoot induction culture in vitro and were closely correlated with variation in shoot regeneration between CXF and CSQ. In addition, the study showed that IAA accumulated rapidly and significantly during shoot induction in CXF compared to that in CSQ; in contrast, no significant changes in other hormones were observed between CXF and CSQ. Furthermore, shoot regeneration in CXF was inhibited by a yucasin-auxin biosynthesis inhibitor, indicating that increased IAA level is required for high-frequency shoot regeneration in CXF. In conclusion, our study revealed that YUC-mediated auxin biogenesis is involved in shoot regeneration from rhizome in Cymbidium.

11.
Theor Appl Genet ; 130(6): 1191-1205, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28283703

RESUMO

KEY MESSAGE: A permanent advanced population containing 388 SSSLs was used for genetic analysis of seed dormancy; 25 QTLs including eight stable, six major and five new were identified. Seed dormancy (SD) is not only a complex biological phenomenon, but also a key practical problem in agricultural production closely related with pre-harvest sprouting (PHS). However, the genetic mechanisms of SD remain elusive. Here, we report the genetic dissection of SD in rice using 388 single segment substitution lines (SSSLs) derived from 16 donor parents. Continuous variation and positive correlations in seed germination percentages were observed in seven seasons. Genetic analysis revealed the narrow sense heritability in different seasons varied from 31.4 to 82.2% with an average value of 56.8%. In addition, 49 SSSLs exhibited significant difference to recipient parent HJX74 on SD in at least two seasons, and 12 of them were stably identified with putative QTLs in all of their corresponding cropping seasons. Based on substitution mapping, a total of 25 dormancy QTLs were detected on 11 chromosomes except the chromosome 5 with an interval length of 1.1 to 31.3 cM. The additive effects of these QTLs changed from -0.31 to -0.13, and the additive effect contributions ranged from 16.7 to 41.4%. Six QTLs, qSD3-2, qSD4-1, qSD7-1, qSD7-2, qSD7-3 and qSD11-2, showed large additive effect contributions (≥30%). Five QTLs, qSD3-3, qSD7-1, qSD7-4, qSD9-1 and qSD10-1, may represent novel ones. Furthermore, linkage and recombinant analysis delimited qSD7-1 to a locus 1.5 cM away from marker Oi2 and a 355-kb fragment flanked by RM1134 and Ui159, respectively. Taken together, this work conducts a comprehensive genetic dissection of SD and will provide more selections for breeding elite PHS-resistant rice varieties.


Assuntos
Oryza/genética , Dormência de Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Ligação Genética , Variação Genética , Oryza/fisiologia , Estações do Ano
12.
Plant Mol Biol ; 92(6): 701-715, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27614468

RESUMO

Most environmental perturbations have a direct or indirect deleterious impact on photosynthesis, and, in consequence, the overall energy status of the cell. Despite our increased understanding of convergent energy and stress signals, the connections between photosynthesis, energy and stress signals through putative common nodes are still unclear. Here we identified an endoplasmic reticulum (ER)-localized adenine nucleotide transporter1 (ER-ANT1), whose deficiency causes seedling lethality in air but viable under high CO2, exhibiting the typical photorespiratory phenotype. Metabolic analysis suggested that depletion of ER-ANT1 resulted in circadian rhythm disorders in sucrose synthesis and induced sucrose signaling pathways, indicating that the ER is involved in the regulation of vital energy metabolism in plants. In addition, the defect of ER-ANT1 triggers ER stress and activates the unfolded protein response in plant cells, suggesting ER stress and photorespiration are closely linked. These findings provide an important evidence for a key role of ER-localized ER-ANT1 in convergent energy and stress signals in rice. Our findings support the idea that ATP is a central signal involved in the plant response to a variety of stresses.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Oryza/fisiologia , Transdução de Sinais , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Oryza/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
13.
Sci Rep ; 6: 26878, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246799

RESUMO

Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs.


Assuntos
Quimera/genética , Genes de Plantas , Genoma de Planta , Vigor Híbrido , Oryza/genética , Melhoramento Vegetal/métodos , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Loci Gênicos , Repetições de Microssatélites , Infertilidade das Plantas/genética , Pólen/genética , Seleção Genética
14.
Breed Sci ; 66(5): 768-775, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28163593

RESUMO

Exploitation of the heterosis of hybrid rice has shown great success in the improvement of rice yields. However, few genotypes exhibit strong restoration ability as effective restorers of cytoplasmic male sterility (CMS) in the development of hybrid rice. In this study, we developed a platform for the breeding by design of CMS restorer lines based on a library of chromosomal single segment substitution lines (SSSLs) in the Huajingxian74 (HJX74) genetic background. The target genes for breeding by design, Rf34 and Rf44, which are associated with a strong restoration ability, and gs3, gw8, Wxg1 and Alk, which are associated with good grain quality, were selected from the HJX74 SSSL library. Through pyramiding of the target genes, a restorer line, H121R, was developed. The H121R line was then improved regarding blast resistance by pyramiding of the qBLAST11 gene. Hence, a new restorer line with blast resistance, H131R, was developed. The platform involving the Rf34 and Rf44 restorer genes would be used for the continuous improvement of restorer lines through breeding by design in rice.

15.
Sheng Wu Gong Cheng Xue Bao ; 31(4): 542-51, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26380411

RESUMO

Genetic transformation is an effective method to improve breeding objective traits of orchids. However, there is little information about genetic transformation of Cymbidium sinensis. Rhizomes from shoot-tip culture of C. sinensis cv. 'Qijianbaimo' were used to establish a practical transformation protocol of C. sinensis. Pre-culture time, concentration and treating methods of acetosyringone, concentration of infection bacteria fluid (OD600), infection time, and co-culture time had significant effects on ß-glucuronidase (GUS) transient expression rate of C. sinensis cv. 'Qijianbaimo' rhizome. The GUS transient expression rate of rhizome was the highest (11.67%) when rhizomes pre-cultured for 39 d were soaked in bacterium suspension (OD600 = 0.9) supplemented with 200 µmol/L acetosyringone for 35 min, followed by culturing on co-culture medium supplemented with 200 µmol/L acetosyringone for 7 d. Under this transformation conditions, 3 transgenic plantlets, confirmed by GUS histochemical assay and PCR, were obtained from 400 regenerated plantlets, and the genetic transformation rate was 0.75%. This proved that it was feasible to create new cultivars by the use of Agrobacterium-mediated genetic transformation in C. sinense.


Assuntos
Engenharia Genética , Orchidaceae/genética , Transformação Genética , Agrobacterium , Técnicas de Cocultura , Glucuronidase , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase
16.
Breed Sci ; 65(3): 192-200, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26175615

RESUMO

Hua-jing-xian 74 and its 12 single segment substitution lines (SSSLs) in rice were used as crossing parents to construct a half diallel crossing population. A total number of 91 materials were grown under three planting densities. By analysis of average plant height (PH) over all environments 10 SSSLs were detected with significant additives and 6 SSSLs with significant dominances. These SSSLs were further tested under different densities respectively, indicating that some of single locus effects were sensitive to densities and the conditions under the density of 16.7 cm × 16.7 cm maybe inhibited the expressing of these PH QTLs. Qualitative and quantitative analyses of each four participating genotypes indicated that digenic interactions among these QTLs were prevalent. Of 66 tested interactions, about 42.4% were epistatic (P < 5%). Although some QTLs hadn't single locus effects, they were possible to form digenic interactions. A significant finding was that the detected epistases were mostly negative. Additionally, these epistases were also found being sensitive to planting densities, the conditions under the density of 10 cm × 16.7 cm perhaps promoted the expressing of epistatic interactions among PH QTLs.

17.
Sci Rep ; 4: 4263, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24584028

RESUMO

Heading date is a critical trait for adaptation of rice to different cultivation areas and cropping seasons. We evaluated the heading dates of 1,123 chromosome segments substitution lines (CSSLs) in the genetic background of an elite rice variety Huajingxian74 (HJX74). A CSSL with the substituted segments from Zihui100 exhibited late heading under both natural long-day (NLD) and natural short-day (NSD) conditions, and the late heading phenotype was controlled by two novel epistatic loci on chromosome 8 and chromosome 3, respectively, termed LH8 and EH3. The function of EH3 was dependent on the LH8 genotype through epistatic interaction between EH3(Zihui100) and LH8(Zihui100) alleles. Genetic and molecular characterization revealed LH8 encodes a CCAAT-box-binding transcription factor with Heading date1 (Hd1)-binding activity and may delay flowering by repressing the expression of Early heading date1 (Ehd1). Our work provides a solid foundation for further study on gene interaction in heading date and has application in breeding rice with greater adaptability.


Assuntos
Ritmo Circadiano/genética , Epistasia Genética/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética , Retroalimentação Fisiológica , Flores/genética , Fotoperíodo
18.
Nat Genet ; 44(8): 950-4, 2012 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-22729225

RESUMO

Grain size and shape are important components of grain yield and quality and have been under selection since cereals were first domesticated. Here, we show that a quantitative trait locus GW8 is synonymous with OsSPL16, which encodes a protein that is a positive regulator of cell proliferation. Higher expression of this gene promotes cell division and grain filling, with positive consequences for grain width and yield in rice. Conversely, a loss-of-function mutation in Basmati rice is associated with the formation of a more slender grain and better quality of appearance. The correlation between grain size and allelic variation at the GW8 locus suggests that mutations within the promoter region were likely selected in rice breeding programs. We also show that a marker-assisted strategy targeted at elite alleles of GS3 and OsSPL16 underlying grain size and shape can be effectively used to simultaneously improve grain quality and yield.


Assuntos
Genes de Plantas , Oryza/crescimento & desenvolvimento , Oryza/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Homologia de Sequência de Aminoácidos
19.
Genetica ; 138(8): 885-93, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20623365

RESUMO

A single segment substitution population of 26 lines and their recipient parent Hua-jing-xian 74 (HJX74) were selected as experimental materials for analyzing the developmental behavior of tiller number in rice. By the unconditional QTL (quantitative trait locus) mapping method, a total number of 14 SSSLs were detected with QTLs controlling rice tiller number. The number of QTLs significantly affecting tiller number and their effect values estimated differed across measuring stages. More QTLs could be detected based on time-dependent measures of different stages. By the conditional QTL mapping method, it is possible to reveal net expression of gene in a time interval. 14 QTLs on tiller number expressed their effects in dynamic patterns of themselves during whole ontogeny. They exhibited mainly negative effects within 7 days after transplanting. During 7-21 days, QTLs were in active status and expressed larger positive effects. In the mid-period of 21-35 days, they had opposite genetic effects to wither tillers. Since then these QTLs expressed positive effects again to cause the appearance of noneffective tillers. The dynamics of QTL effects was in agreement with the actual change of tillers. Mapping QTL combining unconditional with conditional analysis for time-dependent measures is helpful to understand roundly the genetic bases for the development of quantitative traits.


Assuntos
Mapeamento Cromossômico/métodos , Oryza/crescimento & desenvolvimento , Oryza/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Locos de Características Quantitativas , Variação Genética , Oryza/anatomia & histologia , Brotos de Planta/anatomia & histologia
20.
Yi Chuan ; 31(9): 947-52, 2009 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19819848

RESUMO

Ac/Ds insertion mutation was thought to be one of the powerful tools for identifying gene function in rice. In this study, the rice mutant with pale-green leaves was isolated from the population of Ds-T-DNA and Ac-T-DNA transgenic homozygote in a japonica rice variety Zhonghua 11. The leaves of the mutant turned to be pale-green at three-leaf stage. This mutant was capable of growing slowly and maturing under low-light conditions, but, rapidly died under natural light conditions. The analysis of the photosynthetic activity characteristics by measuring chlorophyll fluorescence in vivo suggested that the mutant was a typical photo-inhibitory mutant. Genetic analysis demonstrated that the mutation was the recessive one resulted from Ds insertion.


Assuntos
Elementos de DNA Transponíveis/genética , Mutagênese Insercional/métodos , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Clorofila/metabolismo , Oryza/crescimento & desenvolvimento , Fotossíntese/genética , Fotossíntese/fisiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...