Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2320237121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252821

RESUMO

Dynamic 3D covalent organic frameworks (COFs) have shown concerted structural transformation and adaptive gas adsorption due to the conformational diversity of organic linkers. However, the isolation and observation of COF rotamers constitute undergoing challenges due to their comparable free energy and subtle rotational energy barrier. Here, we report the atomic-level observation and structural evolution of COF rotamers by cryo-3D electron diffraction and synchrotron powder X-ray diffraction. Specifically, we optimize the crystallinity and morphology of COF-320 to manifest its coherent dynamic responses upon adaptive inclusion of guest molecules. We observe a significant crystal expansion of 29 vol% upon hydration and a giant swelling with volume change up to 78 vol% upon solvation. We record the structural evolution from a non-porous contracted phase to two narrow-pore intermediate phases and the fully opened expanded phase using n-butane as a stabilizing probe at ambient conditions. We uncover the rotational freedom of biphenylene giving rise to significant conformational changes on the diimine motifs from synclinal to syn-periplanar and anticlinal rotamers. We illustrate the 10-fold increment of pore volumes and 100% enhancement of methane uptake capacity of COF-320 at 100 bar and 298 K. The present findings shed light on the design of smarter organic porous materials to maximize host-guest interaction and boost gas uptake capacity through progressive structural transformation.

2.
J Am Chem Soc ; 146(1): 1035-1041, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38152052

RESUMO

Dynamic 3D covalent organic frameworks (dynaCOFs) have shown concerted structural transformation and responses upon adaptive guest adsorption. The multivariate (MTV) strategy incorporating multiple functionalities within a backbone is attractive for tuning the framework flexibility and dynamic responses. However, a major synthetic challenge arises from the different chemical reactivities of linkers usually resulting in phase separation. Here, we report a general synthetic protocol for making 3D MTV-COFs by balancing the linker reactivity and solvent polarity. Specifically, 15 crystalline and phase pure MTV-COF-300 isostructures are constructed by linking a tetrahedral unit with eight ditopic struts carrying various functional groups. We find that the electron-donating groups make the linker reactivity too low to allow the reaction to proceed fully, while the electron-withdrawing groups afford increased reactivity and hardly yield crystalline materials. To overcome the crystallization dilemma, the combination of polar aprotic with nonpolar solvents was used to improve the solubility of oligomers and slow the reaction kinetics in MTV-COF synthesis. We demonstrate the abilities of these MTV-COFs to tune gas dynamic behaviors and the separation of benzene and cyclohexane. These findings reveal the integration of multivariate functionalities into dynaCOFs with on-demand flexibility to achieve dynamic synergism in particular applications, outperforming their pure, monofunctional counterparts.

3.
Nat Commun ; 14(1): 4215, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452038

RESUMO

The enolimine-ketoenamine tautomerism has been utilised to construct 2D covalent organic frameworks (COFs) with a higher level of chemical robustness and superior photoelectronic activity. However, it remains challenging to fully control the tautomeric states and correlate their tautomeric structure-photoelectronic properties due to the mobile equilibrium of proton transfer between two other atoms. We show that symmetry-asymmetry tautomerisation from diiminol to iminol/cis-ketoenamine can be stabilised and switched in a crystalline, porous, and dynamic 3D COF (dynaCOF-301) through concerted structural transformation and host-guest interactions upon removal and adaptive inclusion of various guest molecules. Specifically, the tautomeric dynaCOF-301 is constructed by linking the hydroquinone with a tetrahedral building block through imine linkages to form 7-fold interwoven diamondoid networks with 1D channels. Reversible framework deformation and ordering-disordering transition are determined from solvated to activated and hydrated phases, accompanied by solvatochromic and hydrochromic effects useful for rapid, steady, and visual naked-eye chemosensing.


Assuntos
Estruturas Metalorgânicas , Iminas , Porosidade , Prótons
4.
J Am Chem Soc ; 144(29): 13021-13025, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35748600

RESUMO

Metal-organic framework (MOF) glasses are a fascinating new class of materials, yet their prosperity has been impeded by the scarcity of known examples and limited vitrification methods. In the work described in this report, we applied synergistic stimuli of vapor hydration and thermal dehydration to introduce structural disorders in interpenetrated dia-net MOF, which facilitate the formation of stable super-cooled liquid and quenched glass. The material after stimulus has a glass transition temperature (Tg) of 560 K, far below the decomposition temperature of 695 K. When heated, the perturbed MOF enters a super-cooled liquid phase that is stable for a long period of time (>104 s), across a broad temperature range (26 K), and has a large fragility index of 83. Quenching the super-cooled liquid gives rise to porous MOF glass with maintained framework connectivity, confirmed by EXAFS and PDF analysis. This method provides a fundamentally new route to obtain glassy materials from MOFs that cannot be melted without causing decomposition.

5.
Angew Chem Int Ed Engl ; 61(2): e202110082, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34653302

RESUMO

Switching materials in channels of nonlinear optics (NLOs) are of particular interest in NLO material science. Numerous crystalline NLO switches based on structural phase transition have emerged, but most of them reveal a single-step switch between two different second-harmonic-generation (SHG) states, and only very rare cases involve three or more SHG states. Herein, we report a new organic-inorganic hybrid salt, (Me3 NNH2 )2 [CdI4 ], which is an unprecedented case of a reversible three-step NLO switch between SHG-silent, -medium, -low, and -high states, with high contrasts of 25.5/4.3/9.2 in a temperature range of 213-303 K. By using the combined techniques of variable-temperature X-ray single-crystal structural analyses, dielectric constants, solid-state 13 C nuclear magnetic resonance spectroscopy, and Hirshfeld surface analyses, we disclose that this four-state switchable SHG behavior is highly associated with the stepwise-changed molecular dynamics of the polar organic cations. This finding demonstrates well the complexity of molecular dynamics in simple hybrid salts and their potential in designing new advanced multistep switching materials.

6.
Angew Chem Int Ed Engl ; 60(4): 1869-1874, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33285029

RESUMO

2D covalent organic frameworks (COFs) could have well-defined arrangements of photo- and electro-active units that serve as electron or hole transport channels for solar energy harvesting and conversion, but their insufficient charge transfer and rapid charge recombination impede the sunlight-driven photocatalytic performance. We report a new donor-acceptor (D-A) system, PyTz-COF that was constructed from the electron-rich pyrene (Py) and electron-deficient thiazolo[5,4-d]thiazole (Tz). With its bicontinuous heterojunction, PyTz-COF demonstrated exceptional optoelectronic properties, photocatalytic ability in superoxide anion radical-mediated coupling of (arylmethyl)amines and photoelectrochemical activity in sunlight-driven hydrogen evolution. Remarkably, PyTz-COF exhibited a photocurrent up to 100 µA cm-2 at 0.2 V vs. RHE and could reach a hydrogen evolution rate of 2072.4 µmol g-1 h-1 . This work is paving the way for reticular design of highly efficient and highly active D-A systems for solar energy harvesting and conversion.

7.
Chem Asian J ; 14(20): 3552-3556, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30980469

RESUMO

The function of allosteric enzymes can be activated or inhibited through binding of specific effector molecules. Herein, we describe how the skeletal deformation, pore configuration, and ultimately adsorptive behavior of a dynamic metal-organic framework (MOF), (Me2 NH2 )[In(atp)]2 (in which atp=2-aminoterephthalate), are controlled by the allocation and orientation of its counter ions triggered by the inclusion/removal of different guest molecules. The power of such allosteric control in MOFs is highlighted through the optimization of the hydrocarbon separation performance by achieving multiple pore configurations but without altering the chemical composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...