Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(1): e0200721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019705

RESUMO

In the present study, in vitro and in vivo interactions of TOR inhibitor AZD8055 and azoles, including itraconazole, voriconazole, posaconazole and fluconazole, against a variety of pathogenic fungi were investigated. A total of 69 isolates were studied via broth microdilution checkerboard technique, including 23 isolates of Aspergillus spp., 20 isolates of Candida spp., 9 isolates of Cryptococcus neoformans complex, and 17 isolates of Exophiala dermatitidis. The results revealed that AZD8055 individually did not exert any significant antifungal activity. However, synergistic effects between AZD8055 and itraconazole, voriconazole or posaconazole were observed in 23 (33%), 13 (19%) and 57 (83%) isolates, respectively, including azole-resistant A. fumigatus strains and Candida spp., potentiating the efficacy of azoles. The combination effect of AZD8055 and fluconazole was investigated against non-auris Candida spp. and C. neoformans complex. Synergism between AZD8055 and fluconazole was observed in six strains (60%) of Candida spp., resulting in reversion of fluconazole resistance. Synergistic combinations resulted in 4-fold to 256-fold reduction of effective MICs of AZD8055 and azoles. No antagonism was observed. In vivo effects of AZD8055-azole combinations were evaluated by survival assay in Galleria mellonella model infected with A. fumigatus strain AF002, E. dermatitidis strain BMU00038, C. auris strain 383, C. albicans strain R15, and C. neoformans complex strain Z2. AZD8055 acted synergistically with azoles and significantly increased larvae survival (P < 0.05). In summary, the results suggested that AZD8055 combined with azoles may help to enhance the antifungal susceptibilities of azoles against pathogenic fungi and had the potential to overcome azole resistance issues. IMPORTANCE Limited options of antifungals and the emergence of drug resistance in fungal pathogens has been a multifaceted clinical challenge. Combination therapy represents a valuable alternative to antifungal monotherapy. The target of rapamycin (TOR), a conserved serine/threonine kinase from yeast to humans, participates in a signaling pathway that governs cell growth and proliferation in response to nutrient availability, growth factors, and environmental stimuli. AZD8055 is an orally bioavailable, potent, and selective TOR kinase inhibitor that binds to the ATP binding cleft of TOR kinase and inhibits both TORC1 and TORC2. Synergism between AZD8055 and azoles suggested that the concomitant application of AZD8055 and azoles may help to enhance azole therapeutic efficacy and impede azole resistance. TOR inhibitor with fungal specific target is promising to be served as combination regimen with azoles.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Fungos/efeitos dos fármacos , Morfolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Aspergillus , Candida/efeitos dos fármacos , Candida albicans , Farmacorresistência Fúngica/efeitos dos fármacos , Exophiala/efeitos dos fármacos , Humanos , Itraconazol , Testes de Sensibilidade Microbiana , Sirolimo/farmacologia , Triazóis , Voriconazol
2.
Front Microbiol ; 11: 579362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224118

RESUMO

The effects of pyrvinium pamoate alone and in combination with azoles [itraconazole (ITC), posaconazole (POS), and voriconazole (VRC)] were evaluated against Aspergillus fumigatus both in vitro and in vivo. A total of 18 clinical strains of A. fumigatus were studied, including azole-resistant isolates harboring the combination of punctual mutation and a tandem repeat sequence in the Cyp51A gene (AFR1 with TR34/L98H and AFR2 with TR46/Y121F/T289A). The in vitro results revealed that pyrvinium individually exhibited minimal inhibitory concentration (MIC) of 2 µg/ml against AFR1 but was ineffective against other tested strains (MIC > 32 µg/ml). Nevertheless, the synergistic effects of pyrvinium with ITC, VRC, or POS were observed in 15 [83.3%, fractional inhibitory concentration index (FICI) 0.125-0.375], 11 (61.1%, FICI 0.258-0.281), and 16 (88.9%, FICI 0.039-0.281) strains, respectively, demonstrating the potential of pyrvinium in reversion of ITC and POS resistance of both AFR1 (FICI 0.275, 0.281) and AFR2 (FICI 0.125, 0.039). The effective MIC ranges in synergistic combinations were 0.25-8 µg/ml for pyrvinium, 0.125-4 µg/ml for ITC, and 0.125 µg/ml for both VRC and POS, demonstrating 4- to 32-fold reduction in MICs of azoles and up to 64-fold reduction in MICs of pyrvinium, respectively. There was no antagonism. The effect of pyrvinium-azole combinations in vivo was evaluated by survival assay and fungal burden determination in the Galleria mellonella model infected with AF293, AFR1, and AFR2. Pyrvinium alone significantly prolonged the survival of larvae infected with AF293 (P < 0.01) and AFR1 (P < 0.0001) and significantly decreased the tissue fungal burden of larvae infected with AFR1 (P < 0.0001). Pyrvinium combined with azoles significantly improved larvae survival (P < 0.0001) and decreased larvae tissue fungal burden in all three isolates (P < 0.0001). Notably, despite AFR2 infection was resistant to VRC or pyrvinium alone, pyrvinium combined with VRC significantly prolonged survival of both AFR1 and AFR2 infected larvae (P < 0.0001). In summary, the preliminary results indicated that the combination with pyrvinium and azoles had the potential to overcome azole resistance issues of A. fumigatus and could be a promising option for anti-Aspergillus treatment.

3.
Front Cell Infect Microbiol ; 10: 576975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194816

RESUMO

Infections of Exophiala dermatitidis are often chronic and recalcitrant. Combination therapies with novel compounds and azoles could be an effective solution. Previously, we have demonstrated that pyrvinium pamoate exerted antifungal activity alone and favorable synergy with azoles against planktonic E. dermatitidis. Herein, the underlying antifungal mode of action were investigated. Pyrvinium alone showed sessile MIC50 (SMIC50) of 8->16 µg/ml against E. dermatitidis biofilms. However, synergism of PP with itraconazole, voriconazole, and posaconazole were observed against 16 (88.9%), 9 (50%), and 13 (72.2%) strains of E. dermatitidis biofilms. In accordance with in vitro susceptibilities, pyrvinium alone at concentration of 2 µg/ml resulted in significant growth restriction of planktonic E. dermatitidis. Pyrvinium alone resulted in reduction of biofilm formation. Higher concentration of pyrvinium was associate with more progressive reduction of biofilm mass. The in vivo activity of pyrvinium alone and combined with azoles was evaluated using Galleria mellonella model. Pyrvinium alone significantly improved the survival rate of larvae (P < 0.0001). The combination of pyrvinium and voriconazole or posaconazole acted synergistically in vivo (P < 0.05). Fungal burden determination revealed significant reduction of numbers of colony forming unit (CFU) in larvae treated with pyrvinium-itraconazole and pyrvinium-posaconazole compared to itraconazole or posaconazole alone group, respectively. The effect of pyrvinium on apoptosis, expression of TOR and HSP90, and drug efflux reversal were evaluated by PI/Annexin V staining, Real-Time Quantitative PCR and Rhodamine 6G assay, respectively. Pyrvinium alone or combined with azoles significantly (P < 0.05) increased late apoptosis or necrosis of E. dermatitidis cells. Pyrvinium combined with posaconazole significantly decreased the expression of TOR and Hsp90 compared to posaconazole alone group (P < 0.05). Pyrvinium resulted in significant (P < 0.05) decrease of the efflux of Rhodamine 6G. These findings suggested pyrvinium could be a promising synergist with azoles. The underlying mechanisms could be explained by inducing apoptosis/necrosis, inhibition of drug efflux pumps, and signaling pathways related with stress response and growth control.


Assuntos
Azóis , Exophiala , Antifúngicos/farmacologia , Azóis/farmacologia , Testes de Sensibilidade Microbiana , Compostos de Pirvínio
4.
Artigo em Inglês | MEDLINE | ID: mdl-32253207

RESUMO

In vitro and in vivo interactions of minocycline and azoles, including itraconazole, voriconazole, and posaconazole, against filamentous pathogenic fungi were investigated. A total of 56 clinical isolates were studied in vitro via broth microdilution checkerboard technique, including 20 strains of Aspergillus fumigatus, 7 strains of Aspergillus flavus, 16 strains of Exophiala dermatitidis, 10 strains of Fusarium solani, and 3 strain s of Fusarium oxysporum The results revealed that minocycline did not exhibit any significant antifungal activity against any of the tested strains. However, favorable synergy of minocycline with itraconazole, voriconazole, or posaconazole was observed against 34 (61%), 28 (50%), and 38 (68%) isolates, respectively, including azole-resistant A. fumigatus and Fusarium spp. with inherently high MICs of azoles. Synergistic combinations resulted in 4-fold to 16-fold reduction of effective MICs of minocycline and azoles. No antagonism was observed. In vivo effects of minocycline-azole combinations were evaluated by survival assay in a Galleria mellonella model infected with E. dermatitidis strain BMU00034; F. solani strain FS9; and A. fumigatus strains AF293, AFR1, and AFR2. Minocycline acted synergistically with azoles and significantly increased larvae survival in all isolates (P < 0.001), including azole-resistant A. fumigatus and azole-inactive Fusarium spp. In conclusion, the results suggested that minocycline combined with azoles may help to enhance the antifungal susceptibilities of azoles against pathogenic fungi and had the potential to overcome azole resistance issues.


Assuntos
Azóis , Minociclina , Antifúngicos/farmacologia , Aspergillus fumigatus , Azóis/farmacologia , Farmacorresistência Fúngica , Exophiala , Fungos , Fusarium , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Voriconazol/farmacologia
5.
Mycoses ; 61(11): 853-856, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29998564

RESUMO

BACKGROUND: Exophiala dermatitidis causes a variety of illnesses in humans which are always refractory to available treatment modalities. Hsp90 governs crucial stress responses, cell wall repair mechanisms and antifungal resistance in pathogenic fungi. Thus, targeting Hsp90 with specific inhibitors holds considerable promise as combination strategy. OBJECTIVES: To investigate the antifungal effect of 17-AAG alone or combined with azoles against E. dermatitidis. METHODS: In vitro interactions of 17-AAG, a Hsp90 inhibitor, and azoles including itraconazole, voriconazole and posaconazole against E. dermatitidis were evaluated via broth microdilution chequerboard technique, adapted from the CLSI M38-A2 method. A total of 18 clinical strains were studied. Candida parapsilosis (ATCC22019) was included to ensure quality control. RESULTS AND CONCLUSIONS: 17-AAG alone exhibited minimal antifungal activity against all tested isolates. However, synergistic effects between 17-AAG and posaconazole, itraconazole or voriconazole were observed against 15 (83.3%), 12 (66.7%) and 1 (5.6%) isolates of E. dermatitidis, respectively. The effective working ranges of 17-AAG in synergistic combinations were mostly within 2-8 µg/mL. No antagonism was observed. In conclusion, harnessing fungal Hsp90 with 17-AAG might prove a potential antifungal regimen for E. dermatitidis infections. However, due to the host toxicity of 17-AAG, more efforts are needed to develop fungal specific Hsp90 inhibitors.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Benzoquinonas/farmacologia , Exophiala/efeitos dos fármacos , Lactamas Macrocíclicas/farmacologia , Feoifomicose/microbiologia , Quimioterapia Combinada , Exophiala/genética , Exophiala/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Feoifomicose/tratamento farmacológico
7.
Med Mycol ; 56(8): 1045-1049, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346584

RESUMO

In vitro interactions of AT406, a novel IAP antagonist, and azoles including itraconazole, voriconazole, and fluconazole against planktonic cells and biofilms of Candida albicans and Exophiala dermatitidis were assessed via broth microdilution checkerboard technique. AT406 alone exhibited limited antifungal activity. However, synergistic effect between AT406 and fluconazole was observed against both planktonic cells and biofilms of C. albicans, including one fluconazole-resistant strain. Moreover, synergism was also demonstrated between AT406 and itraconazole against both planktonic cells and biofilms of E. dermatitidis. No interaction was observed between AT406 and voriconazole. No antagonism was observed in all combinations.


Assuntos
Antifúngicos/farmacologia , Azocinas/farmacologia , Azóis/farmacologia , Compostos Benzidrílicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Sinergismo Farmacológico , Exophiala/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Exophiala/fisiologia , Humanos , Testes de Sensibilidade Microbiana
8.
Artigo em Inglês | MEDLINE | ID: mdl-28923863

RESUMO

In vitro interactions of tacrolimus, a calcineurin inhibitor, and azoles, including itraconazole, voriconazole, and posaconazole, against planktonic cells and biofilms of Exophiala dermatitidis were assessed via a broth microdilution checkerboard technique. A total of 16 clinical isolates were studied. The results revealed favorable synergistic inhibitory activity between tacrolimus and itraconazole, voriconazole, or posaconazole against 68.8%, 87.5%, and 100% of tested strains of planktonic E. dermatitidis, respectively.However, limited synergism was observed against biofilms of E. dermatitidis No antagonism was observed in all combinations.


Assuntos
Antifúngicos/farmacologia , Inibidores de Calcineurina/farmacologia , Exophiala/efeitos dos fármacos , Itraconazol/farmacologia , Tacrolimo/farmacologia , Triazóis/farmacologia , Voriconazol/farmacologia , Biofilmes/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Sinergismo Farmacológico , Exophiala/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Feoifomicose/tratamento farmacológico , Feoifomicose/microbiologia
9.
Med Mycol ; 55(7): 798-802, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27915302

RESUMO

In vitro interactions of givinostat, a hydroxamate-derived histone deacetylase inhibitor, and antifungals including itraconazole, voriconazole, posaconazole, amphotericin B and caspofungin against Aspergillus spp. were assessed via broth microdilution checkerboard technique system. A total of 30 isolates of Aspergillus spp., including 20 strains of A. fumigatus and 10 strains of A. flavus were studied. The results revealed favorable synergistic effects between givinostat and posaconazole (83.3%) against Aspergillus isolates. Limited synergism was observed when givinostat was combined with itraconazole or voriconazole. No interaction was observed between givinostat and amphotericin B or caspofungin. No antagonism was observed in all combinations.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Carbamatos/farmacologia , Sinergismo Farmacológico , Triazóis/farmacologia , Testes de Sensibilidade Microbiana
10.
Front Microbiol ; 7: 1658, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812353

RESUMO

Infections of Exophiala spp. and Fusarium spp. are often chronic and recalcitrant. Systemic disseminations, which mostly occur in immunocompromised patients, are often refractory to available antifungal therapies. The conserved target of rapamycin (TOR) orchestrates cell growth and proliferation in response to nutrients and growth factors, which are important for pathogenicity and virulence. INK128 is a second-generation ATP-competitive TOR inhibitor, which binds the TOR catalytic domain and selectively inhibits TOR. In the present study, we investigated the in vitro activities of INK128 alone and the interactions of INK128 with conventional antifungal drugs including itraconazole, voriconazole, posaconazole, and amphotericin B against 18 strains of Exophiala spp. and 10 strains of Fusarium spp. via broth microdilution checkerboard technique system adapted from Clinical and Laboratory Standards Institute broth microdilution method M38-A2. INK128 alone was inactive against all isolates tested. However, favorable synergistic effects between INK128 and voriconazole were observed in 61% Exophiala strains and 60% Fusarium strains, despite Fusarium strains exhibited high MIC values (4-8 µg/ml) against voriconazole. In addition, synergistic effects of INK128/itraconazole were shown in 33% Exophiala strains and 30% Fusarium strains, while synergy of INK128/posaconazole were observed in 28% Exophiala strains and 30% Fusarium strains. The effective working ranges of INK128 were 0.125-2 µg/ml and 1-4 µg/ml against Exophiala isolates and Fusarium isolates, respectively. No synergistic effect was observed when INK128 was combined with amphotericin B. No antagonism was observed in all combinations. In conclusion, INK128 could enhance the in vitro antifungal activity of voriconazole, itraconazole and posaconazole against Exophiala spp. and Fusarium spp., suggesting that azoles, especially voriconazole, combined with TOR kinase inhibitor might provide a potential strategy to the treatment of Exophiala and Fusarium infections. However, further investigations are warranted to elucidate the underlying mechanism and to determine possible reliable and safe application in clinical practice.

11.
Front Microbiol ; 7: 617, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199946

RESUMO

Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy (aPDT) has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8, 16, and 32 µg/ml) as a photosensitizing agent and light emitting diode (635 ± 10 nm, 12 and 24 J/cm(2)), and evaluated the effects of photodynamic inactivation on five strains of Fusarium spp. and five strains of Exophiala spp., as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all strains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium strains with high minimal inhibitory concentration (MIC) values of ≥16, 4-8, 4-8, and 2-4 µg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after aPDT treatment. Biofilms of both species showed high sessile MIC50 (SMIC50) and SMIC80 of ≥16 µg/ml for all azoles tested and variable susceptibilities to amphotericin B, with SMIC ranging between 1 and 16 µg/ml. Biofilms subjected to aPDT exhibited a distinct reduction in SMIC50 and SMIC80 compared to untreated groups for both species, except SMIC80 of itraconazole against Fusarium biofilms. In conclusion, in vitro photodynamic therapy was efficient in inactivation of Fusarium spp. and Exophiala spp., both planktonic cultures and biofilms. In addition, the combination of aPDT and antifungal drugs represents an attractive alternative to the current antifungal strategies. However, further investigations are warranted for the reliable and safe application in clinical practice.

12.
Antimicrob Agents Chemother ; 60(6): 3813-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26976874

RESUMO

In vitro interactions of INK128, a target of rapamycin (TOR) kinase inhibitor, and antifungals, including itraconazole, voriconazole, posaconazole, amphotericin B, and caspofungin, against Aspergillus spp. were assessed with the broth microdilution checkerboard technique. Our results suggested synergistic effects between INK128 and all azoles tested, against multiple Aspergillus fumigatus and Aspergillus flavus isolates. However, no synergistic effects were observed when INK128 was combined with amphotericin B or caspofungin. No antagonism was observed for any combination.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Benzoxazóis/farmacologia , Itraconazol/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Voriconazol/farmacologia , Anfotericina B/farmacologia , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/metabolismo , Caspofungina , Combinação de Medicamentos , Sinergismo Farmacológico , Equinocandinas/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...