Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891305

RESUMO

Vaccinium duclouxii, a wild blueberry species native to the mountainous regions of southwestern China, is notable for its exceptionally high anthocyanin content, surpassing that of many cultivated varieties and offering significant research potential. Glutathione S-transferases (GSTs) are versatile enzymes crucial for anthocyanin transport in plants. Yet, the GST gene family had not been previously identified in V. duclouxii. This study utilized a genome-wide approach to identify and characterize the GST gene family in V. duclouxii, revealing 88 GST genes grouped into seven distinct subfamilies. This number is significantly higher than that found in closely related species, with these genes distributed across 12 chromosomes and exhibiting gene clustering. A total of 46 members are classified as tandem duplicates. The gene structure of VdGST is relatively conserved among related species, showing closer phylogenetic relations to V. bracteatum and evidence of purifying selection. Transcriptomic analysis and qRT-PCR indicated that VdGSTU22 and VdGSTU38 were highly expressed in flowers, VdGSTU29 in leaves, and VdGSTF11 showed significant expression in ripe and fully mature fruits, paralleling trends seen with anthocyanin accumulation. Subcellular localization identified VdGSTF11 primarily in the plasma membrane, suggesting a potential role in anthocyanin accumulation in V. duclouxii fruits. This study provides a foundational basis for further molecular-level functional analysis of the transport and accumulation of anthocyanins in V. duclouxii, enhancing our understanding of the molecular mechanisms underlying anthocyanin metabolism in this valuable species.

2.
Front Plant Sci ; 15: 1373669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711605

RESUMO

(E)-ß-Farnesene (EBF) serves as the primary component of the alarm pheromone used by most aphid pest species. Pyrethrum (Tanacetum cinerariifolium) exhibits tissue-specific regulation of EBF accumulation and release, effectively mimicking the aphid alarm signal, deterring aphid attacks while attracting aphid predators. However, cultivated chrysanthemum (Chrysanthemum morifolium), a popular and economically significant flower, is highly vulnerable to aphid infestations. In this study, we investigated the high expression of the pyrethrum EBF synthase (TcEbFS) gene promoter in the flower head and stem, particularly in the parenchyma cells. Subsequently, we introduced the TcEbFS gene, under the control of its native promoter, into cultivated chrysanthemum. This genetic modification led to increased EBF accumulation in the flower stem and young flower bud, which are the most susceptible tissues to aphid attacks. Analysis revealed that aphids feeding on transgenic chrysanthemum exhibited prolonged probing times and extended salivation durations during the phloem phase, indicating that EBF in the cortex cells hindered their host-location behavior. Interestingly, the heightened emission of EBF was only observed in transgenic chrysanthemum flowers after mechanical damage. Furthermore, we explored the potential of this transgenic chrysanthemum for aphid resistance by comparing the spatial distribution and storage of terpene volatiles in different organs and tissues of pyrethrum and chrysanthemum. This study provides valuable insights into future trials aiming for a more accurate replication of alarm pheromone release in plants. It highlights the complexities of utilizing EBF for aphid resistance in cultivated chrysanthemum and calls for further investigations to enhance our understanding of this defense mechanism.

3.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611479

RESUMO

Acyl carrier proteins (ACPs) have been reported to play a crucial role in responding to biotic and abiotic stresses, regulating growth and development. However, the biological function of the ACP gene family in the Brassica genus has been limited until now. In this study, we conducted a comprehensive analysis and identified a total of 120 ACP genes across six species in the Brassica genus. Among these, there were 27, 26, and 30 ACP genes in the allotetraploid B. napus, B. juncea, and B. carinata, respectively, and 14, 13, and 10 ACP genes in the diploid B. rapa, B. oleracea, and B. nigra, respectively. These ACP genes were further classified into six subclades, each containing conserved motifs and domains. Interestingly, the majority of ACP genes exhibited high conservation among the six species, suggesting that the genome evolution and polyploidization processes had relatively minor effects on the ACP gene family. The duplication modes of the six Brassica species were diverse, and the expansion of most ACPs in Brassica occurred primarily through dispersed duplication (DSD) events. Furthermore, most of the ACP genes were under purifying selection during the process of evolution. Subcellular localization experiments demonstrated that ACP genes in Brassica species are localized in chloroplasts and mitochondria. Cis-acting element analysis revealed that most of the ACP genes were associated with various abiotic stresses. Additionally, RNA-seq data revealed differential expression levels of BnaACP genes across various tissues in B. napus, with particularly high expression in seeds and buds. qRT-PCR analysis further indicated that BnaACP genes play a significant role in salt stress tolerance. These findings provide a comprehensive understanding of ACP genes in Brassica plants and will facilitate further functional analysis of these genes.

4.
BMC Plant Biol ; 24(1): 296, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632529

RESUMO

BACKGROUND: Calcium-dependent protein kinases (CPKs) are crucial for recognizing and transmitting Ca2+ signals in plant cells, playing a vital role in growth, development, and stress response. This study aimed to identify and detect the potential roles of the CPK gene family in the amphidiploid Brassica carinata (BBCC, 2n = 34) using bioinformatics methods. RESULTS: Based on the published genomic information of B. carinata, a total of 123 CPK genes were identified, comprising 70 CPK genes on the B subgenome and 53 on the C subgenome. To further investigate the homologous evolutionary relationship between B. carinata and other plants, the phylogenetic tree was constructed using CPKs in B. carinata and Arabidopsis thaliana. The phylogenetic analysis classified 123 family members into four subfamilies, where gene members within the same subfamily exhibited similar conserved motifs. Each BcaCPK member possesses a core protein kinase domain and four EF-hand domains. Most of the BcaCPK genes contain 5 to 8 introns, and these 123 BcaCPK genes are unevenly distributed across 17 chromosomes. Among these BcaCPK genes, 120 replicated gene pairs were found, whereas only 8 genes were tandem duplication, suggesting that dispersed duplication mainly drove the family amplification. The results of the Ka/Ks analysis indicated that the CPK gene family of B. carinata was primarily underwent purification selection in evolutionary selection. The promoter region of most BcaCPK genes contained various stress-related cis-acting elements. qRT-PCR analysis of 12 selected CPK genes conducted under cadmium and salt stress at various points revealed distinct expression patterns among different family members in response to different stresses. Specifically, the expression levels of BcaCPK2.B01a, BcaCPK16.B02b, and BcaCPK26.B02 were down-regulated under both stresses, whereas the expression levels of other members were significantly up-regulated under at least one stress. CONCLUSION: This study systematically identified the BcaCPK gene family in B. carinata, which contributes to a better understanding the CPK genes in this species. The findings also serve as a reference for analyzing stress responses, particularly in relation to cadmium and salt stress in B. carinata.


Assuntos
Brassica , Brassica/genética , Filogenia , Cádmio/metabolismo , Família Multigênica , Genômica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Genoma de Planta
5.
Planta ; 259(2): 41, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270671

RESUMO

MAIN CONCLUSION: In flowers multiple secretory systems cooperate to deliver specialized metabolites to support specific roles in defence and pollination. The collective roles of cell types, enzymes, and transporters are discussed. The interplay between reproductive strategies and defense mechanisms in flowering plants has long been recognized, with trade-offs between investment in defense and reproduction predicted. Glandular trichomes and secretory cavities or ducts, which are epidermal and internal structures, play a pivotal role in the secretion, accumulation, and transport of specialized secondary metabolites, and contribute significantly to defense and pollination. Recent investigations have revealed an intricate connection between these two structures, whereby specialized volatile and non-volatile metabolites are exchanged, collectively shaping their respective ecological functions. However, a comprehensive understanding of this profound integration remains largely elusive. In this review, we explore the secretory systems and associated secondary metabolism primarily in Asteraceous species to propose potential shared mechanisms facilitating the directional translocation of these metabolites to diverse destinations. We summarize recent advances in our understanding of the cooperativity between epidermal and internal secretory structures in the biosynthesis, secretion, accumulation, and emission of terpenes, providing specific well-documented examples from pyrethrum (Tanacetum cinerariifolium). Pyrethrum is renowned for its natural pyrethrin insecticides, which accumulate in the flower head, and more recently, for emitting an aphid alarm pheromone. These examples highlight the diverse specializations of secondary metabolism in pyrethrum and raise intriguing questions regarding the regulation of production and translocation of these compounds within and between its various epidermal and internal secretory systems, spanning multiple tissues, to serve distinct ecological purposes. By discussing the cooperative nature of secretory structures in flowering plants, this review sheds light on the intricate mechanisms underlying the ecological roles of terpenes in defense and pollination.


Assuntos
Magnoliopsida , Polinização , Transporte Biológico , Reprodução , Terpenos
6.
Genes (Basel) ; 14(12)2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38137046

RESUMO

Recently, pollution caused by the heavy metal Cd has seriously affected the environment and agricultural crops. While Sinapis alba is known for its edible and medicinal value, its tolerance to Cd and molecular response mechanism remain unknown. This study aimed to analyze the tolerance of S. alba to Cd and investigate its molecular response mechanism through transcriptomic and physiological indicators. To achieve this, S. alba seedlings were treated with different concentrations of CdCl2 (0.25 mmol/L, 0.5 mmol/L, and 1.0 mmol/L) for three days. Based on seedling performance, S. alba exhibited some tolerance to a low concentration of Cd stress (0.25 mmol/L CdCl2) and a strong Cd accumulation ability in its roots. The activities and contents of several antioxidant enzymes generally exhibited an increase under the treatment of 0.25 mmol/L CdCl2 but decreased under the treatment of higher CdCl2 concentrations. In particular, the proline (Pro) content was extremely elevated under the 0.25 and 0.5 mmol/L CdCl2 treatments but sharply declined under the 1.0 mmol/L CdCl2 treatment, suggesting that Pro is involved in the tolerance of S. alba to low concentration of Cd stress. In addition, RNA sequencing was utilized to analyze the gene expression profiles of S. alba exposed to Cd (under the treatment of 0.25 mmol/L CdCl2). The results indicate that roots were more susceptible to disturbance from Cd stress, as evidenced by the detection of 542 differentially expressed genes (DEGs) in roots compared to only 37 DEGs in leaves. GO and KEGG analyses found that the DEGs induced by Cd stress were primarily enriched in metabolic pathways, plant hormone signal transduction, and the biosynthesis of secondary metabolites. The key pathway hub genes were mainly associated with intracellular ion transport and cell wall synthesis. These findings suggest that S. alba is tolerant to a degree of Cd stress, but is also susceptible to the toxic effects of Cd. Furthermore, these results provide a theoretical basis for understanding Cd tolerance in S. alba.


Assuntos
Cádmio , Metais Pesados , Cádmio/toxicidade , Cádmio/metabolismo , Sinapis/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
7.
Hortic Res ; 10(11): uhad209, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023474

RESUMO

Vaccinium duclouxii, endemic to southwestern China, is a berry-producing shrub or small tree belonging to the Ericaceae family, with high nutritive, medicinal, and ornamental value, abundant germplasm resources, and good edible properties. In addition, V. duclouxii exhibits strong tolerance to adverse environmental conditions, making it a promising candidate for research and offering wide-ranging possibilities for utilization. However, the lack of V. duclouxii genome sequence has hampered its development and utilization. Here, a high-quality telomere-to-telomere genome sequence of V. duclouxii was de novo assembled and annotated. All of 12 chromosomes were assembled into gap-free single contigs, providing the highest integrity and quality assembly reported so far for blueberry. The V. duclouxii genome is 573.67 Mb, which encodes 41 953 protein-coding genes. Combining transcriptomics and metabolomics analyses, we have uncovered the molecular mechanisms involved in sugar and acid accumulation and anthocyanin biosynthesis in V. duclouxii. This provides essential molecular information for further research on the quality of V. duclouxii. Moreover, the high-quality telomere-to-telomere assembly of the V. duclouxii genome will provide insights into the genomic evolution of Vaccinium and support advancements in blueberry genetics and molecular breeding.

8.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685867

RESUMO

In plants, expansin genes are responsive to heavy metal exposure. To study the bioremediary potential of this important gene family, we discovered a root-expressed expansin gene in sorghum, SbEXPA11, which is notably upregulated following cadmium (Cd) exposure. However, the mechanism underlying the Cd detoxification and accumulation mediated by SbEXPA11 in sorghum remains unclear. We overexpressed SbEXPA11 in sorghum and compared wild-type (WT) and SbEXPA11-overexpressing transgenic sorghum in terms of Cd accumulation and physiological indices following Cd. Compared with the WT, we found that SbEXPA11 mediates Cd tolerance by exerting reactive oxygen species (ROS)-scavenging effects through upregulating the expression of antioxidant enzymes. Moreover, the overexpression of SbEXPA11 rescued biomass production by increasing the photosynthetic efficiency of transgenic plants. In the pot experiment with a dosage of 10 mg/kg Cd, transgenic sorghum plants demonstrated higher efficacy in reducing the Cd content of the soil (8.62 mg/kg) compared to WT sorghum plants (9.51 mg/kg). Subsequent analysis revealed that the SbbHLH041 transcription factor has the ability to induce SbEXPA11 expression through interacting with the E-box located within the SbEXPA11 promoter. These findings suggest that the SbbHLH041-SbEXPA11 cascade module may be beneficial for the development of phytoremediary sorghum varieties.


Assuntos
Biodegradação Ambiental , Cádmio , Sorghum , Antioxidantes , Biomassa , Cádmio/metabolismo , Cádmio/toxicidade , Grão Comestível , Plantas Geneticamente Modificadas/genética , Sorghum/genética , Sorghum/metabolismo
9.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108541

RESUMO

Natural pyrethrins have high application value, and are widely used as a green pesticide in crop pest prevention and control. Pyrethrins are mainly extracted from the flower heads of Tanacetum cinerariifolium; however, the natural content is low. Therefore, it is essential to understand the regulatory mechanisms underlying the synthesis of pyrethrins through identification of key transcription factors. We identified a gene encoding a MYC2-like transcription factor named TcbHLH14 from T. cinerariifolium transcriptome, which is induced by methyl jasmonate. In the present study, we evaluated the regulatory effects and mechanisms of TcbHLH14 using expression analysis, a yeast one-hybrid assay, electrophoretic mobility shift assay, and overexpression/virus-induced gene silencing experiments. We found that TcbHLH14 can directly bind to the cis-elements of the pyrethrins synthesis genes TcAOC and TcGLIP to activate their expression. The transient overexpression of TcbHLH14 enhanced expression of the TcAOC and TcGLIP genes. Conversely, transient silencing of TcbHLH14 downregulated the expression of TcAOC and TcGLIP and reduced the content of pyrethrins. In summary, these results indicate that the potential application of TcbHLH14 in improving the germplasm resources and provide a new insight into the regulatory network of pyrethrins biosynthesis of T. cinerariifolium to further inform the development of engineering strategies for increasing pyrethrins contents.


Assuntos
Chrysanthemum cinerariifolium , Inseticidas , Piretrinas , Piretrinas/metabolismo , Chrysanthemum cinerariifolium/genética , Inseticidas/metabolismo , Fatores de Transcrição/metabolismo
10.
Front Plant Sci ; 14: 1133912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890888

RESUMO

Pyrethrins, synthesized in the perennial plant Tanacetum cinerariifolium, are a class of terpene mixtures with high insecticidal activity and low human toxicity, which are widely used in plant-derived pesticides. Numerous studies have identified multiple pyrethrins biosynthesis enzymes, which can be enhanced by exogenous hormones such as methyl jasmonate (MeJA). However, the mechanism by which hormone signaling regulates pyrethrins biosynthesis and the potential involvement of certain transcription factors (TFs) remain unclear. In this study, we found that the expression level of a TF in T. cinerariifolium was significantly increased after treatment with plant hormones (MeJA, abscisic acid). Subsequent analysis identified this TF as a member of the basic region/leucine zipper (bZIP) family and was thus named TcbZIP60. TcbZIP60 was localized in the nucleus, suggesting that it is involved in the transcription process. The expression profiles of TcbZIP60 were similar to those of pyrethrins synthesis genes in different flower organs and at different flowering stages. Furthermore, TcbZIP60 could directly bind to the E-box/G-box motifs in the promoters of the pyrethrins synthesis genes TcCHS and TcAOC to activate their expression. Transient overexpression of TcbZIP60 increased the expression levels of pyrethrins biosynthesis genes, leading to the significant accumulation of pyrethrins. Silencing of TcbZIP60 significantly downregulated pyrethrins accumulation and the expression of related genes. Overall, our results reveal a novel TF, TcbZIP60, that regulates both the terpenoid and jasmonic acid pathways of pyrethrins biosynthesis in T. cinerariifolium.

11.
Hortic Res ; 9: uhac178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338845

RESUMO

Pyrethrins constitute a class of terpene derivatives with high insecticidal activity and are mainly synthesized in the capitula of the horticulturally important plant, Tanacetum cinerariifolium. Treatment of T. cinerariifolium with methyl jasmonate (MeJA) in the field induces pyrethrin biosynthesis, but the mechanism linking MeJA with pyrethrin biosynthesis remains unclear. In this study, we explored the transcription factors involved in regulating MeJA-induced pyrethrin biosynthesis. A single spray application of MeJA to T. cinerariifolium leaves rapidly upregulated the expression of most known pyrethrin biosynthesis genes and subsequently increased the total pyrethrin content in the leaf. A continuous 2-week MeJA treatment resulted in enhanced pyrethrin content and increased trichome density. TcMYC2, a key gene in jasmonate signaling, was screened at the transcriptome after MeJA treatment. TcMYC2 positively regulated expression of the pyrethrin biosynthesis genes TcCHS, TcAOC, and TcGLIP by directly binding to E-box/G-box motifs in the promoters. The stable overexpression of TcMYC2 in T. cinerariifolium hairy roots significantly increased the expression of TcAOC and TcGLIP. Further transient overexpression and viral-induced gene-silencing experiments demonstrated that TcMYC2 positively promoted pyrethrin biosynthesis. Collectively, the results reveal a novel molecular mechanism for MeJA-induced pyrethrin biosynthesis in T. cinerariifolium involving TcMYC2.

12.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293043

RESUMO

Pyrethrins are a mixture of terpenes, with insecticidal properties, that accumulate in the aboveground parts of the pyrethrum (Tanacetum cinerariifolium). Numerous studies have been published on the positive role of MYB transcription factors (TFs) in terpenoid biosynthesis; however, the role of MYB TFs in pyrethrin biosynthesis remains unknown. Here, we report the isolation and characterization of a T. cinerariifolium MYB gene encoding a R3-MYB protein, TcMYB8, containing a large number of hormone-responsive elements in its promoter. The expression of the TcMYB8 gene showed a downward trend during the development stage of flowers and leaves, and was induced by methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA). Transient overexpression of TcMYB8 enhanced the expression of key enzyme-encoding genes, TcCHS and TcGLIP, and increased the content of pyrethrins. By contrast, transient silencing of TcMYB8 decreased pyrethrin contents and downregulated TcCHS and TcGLIP expression. Further analysis indicated that TcMYB8 directly binds to cis-elements in proTcCHS and proTcGLIP to activate their expression, thus regulating pyrethrin biosynthesis. Together, these results highlight the potential application of TcMYB8 for improving the T. cinerariifolium germplasm, and provide insight into the pyrethrin biosynthesis regulation network.


Assuntos
Chrysanthemum cinerariifolium , Piretrinas , Chrysanthemum cinerariifolium/genética , Chrysanthemum cinerariifolium/metabolismo , Piretrinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Terpenos/metabolismo , Ácido Salicílico/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Plants (Basel) ; 11(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736726

RESUMO

Pyrethrum (Tanacetum cinerariifolium) is one of the most important industrial crops for the extraction of pyrethrins, which are natural insecticidal compounds. Progress in pyrethrum molecular breeding with the objective of increasing pyrethrin content has been slow for lack of a suitable gene transfer system. Regeneration recalcitrance is a crucial barrier to establishing a genetic transformation system in pyrethrum. Therefore, in this study, an Agrobacterium-mediated transformation system in pyrethrum was developed using shoot apical meristems from germinated seedlings. Factors affecting transformation efficiency were optimized. Optimal conditions included explants at the "no true leaf" stage with a half apical meristem, an Agrobacterium tumefaciens cell density of OD600 = 0.5, two days of cocultivation, and the incorporation of 1.5 mg L-1 6-BA and 30 mg L-1 kanamycin into the selection medium. Under the optimized conditions, two expression cassettes (proTcCHS-GUS and proRbcS-TcCHS) were successfully transformed into pyrethrum. Polymerase chain reaction (PCR), Southern blotting, reverse-transcription quantitative PCR (RT-qPCR), and histochemical staining confirmed the identity of proTcCHS-GUS transgenic plants. PCR and RT-qPCR analyses confirmed the identity of proRbcS-TcCHS transgenic plants. The transformation efficiency was 0.83% (5 transgenic lines/600 infected explants). The relative concentration of pyrethrins in proRbcS-TcCHS transformants (OX T0-1: 1.50% or OX T0-2: 1.24%) was higher than that in nontransformed plants (WT: 0.76%). Thus, the genetic transformation system overcame the low regeneration efficiency and integrated a foreign gene into the pyrethrum genome. The new system is a suitable and effective tool for creating high-yielding cultivars of pyrethrum.

14.
Plant Methods ; 18(1): 32, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35292048

RESUMO

BACKGROUND: Traditional CRISPR/Cas9 systems that rely on U6 or U3 snRNA promoters (RNA polymerase III-dependent promoters) can only achieve constitutive gene editing in plants, hampering the functional analysis of specifically expressed genes. Ribozyme-mediated CRISPR/Cas9 systems increase the types of promoters which can be used to transcribe sgRNA. Therefore, such systems allow specific gene editing; for example, transcription of the artificial gene Ribozyme-sgRNA-Ribozyme (RGR) is initiated by an RNA polymerase II-dependent promoter. Genetic transformation is indispensable for editing plant genes. In certain plant species, including pyrethrum, genetic transformation remains challenging to do, limiting the functional verification of novel CRISPR/Cas9 systems. Thus, this study's aim was to develop a simple Agrobacterium rhizogenes-mediated hairy root transformation system to analyze the function of a ribozyme-mediated CRISPR/Cas9 system in pyrethrum. RESULTS: A hairy root transformation system for pyrethrum is described, with a mean transformation frequency of 7%. Transgenic hairy roots transformed with the pBI121 vector exhibited significantly increased beta-glucuronidase staining as a visual marker of transgene expression. Further, a ribozyme-based CRISPR/Cas9 vector was constructed to edit the TcEbFS gene, which catalyzes synthesis of the defense-related compound (E)-ß-farnesene in pyrethrum. The vector was transferred into the hairy roots of pyrethrum and two stably transformed hairy root transgenic lines obtained. Editing of the TcEbFS gene in the hairy roots was evaluated by gene sequencing, demonstrating that both hairy root transgenic lines had DNA base loss at the editing target site. Gas chromatography-mass spectrometry showed that the (E)-ß-farnesene content was significantly decreased in both hairy root transgenic lines compared with the empty vector control group. Altogether, these results show that RGR can be driven by the CaMV35S promoter to realize TcEbFS gene editing in pyrethrum hairy roots. CONCLUSION: An A. rhizogenes-mediated hairy root transformation and ribozyme-mediated CRISPR/Cas9 gene editing system in pyrethrum was established, thereby facilitating gene editing in specific organs or at a particular developmental stage in future pyrethrum research.

15.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884809

RESUMO

Natural pyrethrins have been widely used as natural pesticides due to their low mammalian toxicity and environmental friendliness. Previous studies have mainly focused on Tanacetumcinerariifolium, which contains high levels of pyrethrins and volatile terpenes that play significant roles in plant defense and pollination. However, there is little information on T. coccineum due to its lower pyrethrin content and low commercial value. In this study, we measured the transcriptome and metabolites of the leaves (L), flower buds (S1), and fully blossomed flowers (S4) of T. coccineum. The results show that the expression of pyrethrins and precursor terpene backbone genes was low in the leaves, and then rapidly increased in the S1 stage before decreasing again in the S4 stage. The results also show that pyrethrins primarily accumulated at the S4 stage. However, the content of volatile terpenes was consistently low. This perhaps suggests that, despite T. coccineum and T. cinerariifolium having similar gene expression patterns and accumulation of pyrethrins, T. coccineum attracts pollinators via its large and colorful flowers rather than via inefficient and metabolically expensive volatile terpenes, as in T. cinerariifolium. This is the first instance of de novo transcriptome sequencing reported for T. coccineum. The present results could provide insights into pyrethrin biosynthetic pathways and will be helpful for further understanding how plants balance the cost-benefit relationship between plant defense and pollination.


Assuntos
Chrysanthemum cinerariifolium/genética , Chrysanthemum cinerariifolium/metabolismo , Piretrinas/metabolismo , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Afídeos/fisiologia , Flores/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta/metabolismo , Transcrição Gênica/genética , Transcriptoma/genética
16.
Mitochondrial DNA B Resour ; 6(10): 3062-3063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595337

RESUMO

Chrysanthemum × morifolium 'Fubaiju,' which is native to Macheng, Hubei, China, has a long cultivation history almost dating back to the early 10th century Song dynasty, and is used as Chrysanthemum tea drink and Chinese traditional medicine. In this study, the complete chloroplast genome sequence of 'Fubaiju' was 151,109 bp, included a large single copy LSC (82,931 bp), a small single copy SSC (18,350 bp), and a pair of inverted repeat regions (24,941 bp). It contained 132 genes with 87 CDS, 8r RNA, and 37 tRNA. The phylogenetic analysis showed that the C. × morifolium 'Fubaiju' was clustered together with C. × morifolium 'Baekma'.

17.
Phytochemistry ; 187: 112768, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33932787

RESUMO

Plant defensive mimicry based on the aphid alarm pheromone (E)-ß-farnesene (EßF) was previously shown to operate in Tanacetum cinerariifolium (Asteraceae) flowers. Germacrene D (GD), is another dominant volatile of T. cinerariifolium flowers and may modulate both defense and pollination. Here, we find that the increase in GD/EßF ratio at later developmental stages is correlated with the tissue distribution in the flower head: the total content of EßF and GD is similar, but GD accumulates comparatively more in the upper disk florets. Naphthol and N, N-dimethyl-p-phenylenediamine dihydrochloride (NADI)-stained purple ducts containing EßF and GD, were observed in the five petal lips of the corolla and two-lobed stigma of disk florets. By contrast in the peduncle, EßF accounts for nearly 80% of total terpenes, compared to 5% for GD. EßF is accumulated inside inner cortex cells and parenchyma cells of the pith in young peduncle. This is followed by the formation of terpene-filled axial secretory cavities parallel to the vascular bundles. In conclusion, the observed developmental and diurnal emissions of different EßF/GD ratios appear to be regulated by their tissue distribution.


Assuntos
Afídeos , Chrysanthemum cinerariifolium , Sesquiterpenos , Animais , Flores , Especificidade de Órgãos , Sesquiterpenos de Germacrano
18.
Genes (Basel) ; 12(3)2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801035

RESUMO

Green chrysanthemums are difficult to breed but have high commercial value. The molecular basis for the green petal color in chrysanthemum is not fully understood. This was investigated in the present study by RNA sequencing analysis of white and green ray florets collected at three stages of flower development from the F1 progeny of the cross between Chrysanthemum × morifolium "Lüdingdang" with green-petaled flowers and Chrysanthemum vistitum with white-petaled flowers. The chlorophyll content was higher and chloroplast degradation was slower in green pools than in white pools at each developmental stage. Transcriptome analysis revealed that genes that were differentially expressed between the two pools were enriched in pathways related to chlorophyll metabolism and photosynthesis. We identified the transcription factor genes CmCOLa, CmCOLb, CmERF, and CmbHLH as regulators of the green flower color in chrysanthemum by differential expression analysis and weighted gene co-expression network analysis. These findings can guide future efforts to improve the color palette of chrysanthemum flowers through genetic engineering.


Assuntos
Clorofila/metabolismo , Chrysanthemum/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Cloroplastos/química , Chrysanthemum/genética , Chrysanthemum/metabolismo , Regulação da Expressão Gênica de Plantas , Fotossíntese , Melhoramento Vegetal , Proteínas de Plantas/genética , Locos de Características Quantitativas , Análise de Sequência de RNA
19.
Mitochondrial DNA B Resour ; 5(3): 2233-2234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33366986

RESUMO

Tanacetum coccineum, a perennial plant of the Tanacetum genus, cultivated as a natural pesticide or ornamental plant widely distributed in many countries. In this research, the complete chloroplast genome sequence of T. coccineum was determined to comprise a 150,143 bp double-stranded circular DNA, including a pair of 24,416 bp inverted repeat regions (IRs), small single copy (SSC) region of 18,389 bp and large single copy (LCS) region of 82,922 bp. An overall GC content was 37.49%, and the corresponding values in IRs, SSC, and LSC regions are 43.16%, 30.88%, and 35.61%, respectively. A total of 129 genes include 84 protein-coding genes, 37 tRNA, and eight rRNA. Four rRNA genes and seven tRNA genes were duplicated in IRs. A phylogenetic tree reconstructed by 38 Composite family chloroplast genomes sequence reveals that T. coccineum is mostly related to Ismelia carinata.

20.
Gene ; 731: 144340, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31923575

RESUMO

As a member of the large Brassicaceae family, yellow mustard (Sinapis alba L.) has been used as an important gene pool for the genetic improvement of cash crops in Brassicaceae. Understanding the phylogenetic relationship between Sinapis alba (S. alba) and other Brassicaceae crops can provide guidance on the introgression of its favorable alleles into related species. The chloroplast (cp) genome is an ideal model for assessing genome evolution and the phylogenetic relationships of complex angiosperm families. Herein, we de novo assembled the complete cp genome of S. alba by integrating the PacBio and Illumina sequencing platforms. A 153,760 bp quadripartite cycle without any gap was obtained, including a pair of inverted repeats (IRa and IRb) of 26,221 bp, separated by a large single copy (LSC) region of 83,506 bp and a small single copy (SSC) region of 17,821 bp. A total of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes were identified in this cp genome, as were 89 simple sequence repeat (SSR) loci of 18 types. The codon usage analysis revealed a preferential use of the Leu codon with the A/U ending. The phylogenetic analysis using 82 Brassicaceae species demonstrated that S. alba had a close relationship with important Brassica and Raphanus species; moreover, it likely originated from a separate evolutionary pathway compared with the congeneric Sinapis arvensis. The synonymous (Ks) and non-synonymous (Ks) substitution rate analysis showed that genes encoding "Subunits of cytochrome b/f complex" were under the lowest purifying selection pressure, whereas those associated with "Maturase", "Subunit of acetyl-CoA", and "Subunits of NADH-dehydrogenase" underwent relatively higher purifying selection pressures. Our results provide valuable information for fully utilizing the S. alba cp genome as a potential genetic resource for the genetic improvement of Brassica and Raphanus species.


Assuntos
Brassicaceae/classificação , Brassicaceae/genética , Genoma de Cloroplastos/genética , Mostardeira/genética , Sinapis/genética , Cloroplastos/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Mostardeira/classificação , Mostardeira/citologia , Filogenia , Raphanus/classificação , Raphanus/citologia , Raphanus/genética , Análise de Sequência de DNA/métodos , Sinapis/classificação , Sinapis/citologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...