Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893300

RESUMO

All-inorganic metal halide perovskite is promising for highly efficient and thermally stable perovskite light-emitting diodes (PeLEDs). However, there is still great room for improvement in the film quality, including low coverage and high trap density, which play a vital role in achieving high-efficiency PeLEDs. In this work, lead acetate (Pb(Ac)2) was introduced into the perovskite precursor solution as an additive. Experimental results show that perovskite films deposited from a one-step anti-solvent free solution process with increased surface coverage and reduced trap density were obtained, leading to enhanced photoluminescence (PL) intensity. More than that, the valence band maximum (VBM) of perovskite films was reduced, bringing about a better energy level matching the work function of the hole-injection layer (HIL) poly (3,4-ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT: PSS), which is facilitated for the hole injection, leading to a decrease in the turn-on voltage (Vth) of PeLEDs from 3.4 V for the control device to 2.6 V. Finally, the external quantum efficiency (EQE) of the sky blue PeLEDs (at 484 nm) increased from 0.09% to 0.66%. The principles of Pb(Ac)2 were thoroughly investigated by using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). This work provides a simple and effective strategy for improving the morphology of perovskite and therefore the performance of PeLEDs.

2.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446637

RESUMO

Defects in perovskite films are one of the main factors that affect the efficiency and stability of halide perovskite solar cells (PSCs). Uncoordinated ions (such as Pb2+, I-) act as trap states, causing the undesirable non-radiative recombination of photogenerated carriers. The formation of Lewis acid-base adducts in perovskite directly involves the crystallization process, which can effectively passivate defects. In this work, 4-(trifluoromethyl)-1H-imidazole (THI) was introduced into the perovskite precursor solution as a passivation agent. THI is a typical amphoteric compound that exhibits a strong Lewis base property due to its lone pair electrons. It coordinates with Lewis acid Pb2+, leading to the reduction in defect density and increase in crystallinity of perovskite films. Finally, the power conversion efficiency (PCE) of PSC increased from 16.49% to 18.97% due to the simultaneous enhancement of open-circuit voltage (VOC), short circuit current density (JSC) and fill factor (FF). After 30 days of storage, the PCE of the 0.16 THI PSC was maintained at 61.9% of its initial value, which was 44.3% for the control device. The working mechanism of THI was investigated. This work provides an attractive alternative method to passivate the defects in perovskite.


Assuntos
Chumbo , Ácidos de Lewis , Compostos de Cálcio , Imidazóis , Bases de Lewis
3.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683924

RESUMO

A π-conjugated small molecule N, N'-bis(naphthalen-1-yl)-N, N'-bis(phenyl)benzidine (NPB) was introduced into poly(9-vinylcarbazole) (PVK) as a hole transport layer (HTL) in inverted perovskite solar cells (PSCs). The NPB doping induces a better perovskite crystal growth, resulting in perovskite with a larger grain size and less defect density. Thus, the VOC, JSC, and FF of the PSC were all enhanced. Experimental results show that it can be ascribed to the reduction of surface roughness and improved hydrophilicity of the HTL. The effect of NPB on the aggregation of PVK was also discussed. This work demonstrates the great potential of PVK as the HTL of PSCs and provides an attractive alternative for HTL to realize high-efficiency PSCs.

4.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160390

RESUMO

Nonradiative recombination losses caused by defects in the perovskite layer seriously affects the efficiency and stability of perovskite solar cells (PSCs). Hence, defect passivation is an effective way to improve the performance of PSCs. In this work, trichloromelamine (TCM) was used as a defects passivator by adding it into the perovskite precursor solution. The experimental results show that the power conversion efficiency (PCE) of PSC increased from 18.87 to 20.15% after the addition of TCM. What's more, the environmental stability of PSCs was also improved. The working mechanism of TCM was thoroughly investigated, which can be ascribed to the interaction between the -NH- group and uncoordinated lead ions in the perovskite. This work provides a promising strategy for achieving highly efficient and stable PSCs.

5.
Sci Rep ; 9(1): 18232, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796835

RESUMO

Enhancing the injection of electron is an effective strategy to improve the performance of polymer light-emitting diodes (PLEDs). In this work, we reported a 286% improvement in current efficiency (CE) of PLEDs by using double-layered alkali halide electron injection layer (EIL) NaCl/LiF instead of LiF. A significant enhancement of electron injection was observed after inserting the NaCl layer. To understand the mechanism of such improvement, the devices with KBr/LiF and CsF/LiF as EILs were also investigated. Experimental results show that metal cation migrated under the effect of built-in electric field (Vbi), which plays the main role on the improvement of electron injection in PLEDs.

6.
ACS Appl Mater Interfaces ; 9(31): 26314-26324, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28753269

RESUMO

Flexible pressure sensors have attracted increasing research interest because of their potential applications for wearable sensing devices. Herein, a highly sensitive flexible pressure sensor is exhibited based on the elastomeric electrodes and a microarray architecture. Polydimethylsiloxane (PDMS) substrate, coated with silver nanowires (AgNWs), is used as the top electrode, while polyvinylidene fluoride (PVDF) as the dielectric layer. Several transfer processes are applied on seeking facile strategy for the preparation of the bottom electrode via embedding AgNWs into the PDMS film of microarray structure. The flexible pressure sensor integrates the top electrode, dielectric layer, and microarray electrode in a sandwich structure. It is demonstrated that such sensors possess the superiorities of high sensitivity (2.94 kPa-1), low detection limit (<3 Pa), short response time (<50 ms), excellent flexibility, and long-term cycle stability. This simple process for preparing such sensors can also be easily scaled up to construct pressure sensor arrays for detecting the intensity and distribution of the loaded pressure. In addition, this flexible pressure sensor exhibits good performance even in a noncontact way, such as detecting voice vibrations and air flow. Due to its superior performance, this designed flexible pressure sensor demonstrates promising potential in the application of electronic skins, as well as wearable healthcare monitors.

7.
ACS Appl Mater Interfaces ; 9(22): 18399-18404, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28521088

RESUMO

The polar solvent dimethylformamide (DMF) was used to treat the emissive layer (EML) of polymer light-emitting diodes (PLEDs). The formation of a dipole layer at the EML/cathode interface after DMF treatment was proven, which led to a reduction of the electron-injection barrier. The dipole layer was formed mainly because of the intrinsic polarity of DMF. By control of the residue of DMF on the EML, a maximum enhancement of the peak luminous efficiency from 5.33 ± 0.57 to 12.05 ± 1.2 cd/A was achieved. This study suggests that solvent treatment is a simple and efficient approach to realizing highly efficient PLEDs with a high-work-function metal cathode.

8.
Molecules ; 22(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338627

RESUMO

This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.


Assuntos
Compostos de Cálcio , Óxidos , Energia Solar , Titânio , Análise Espectral , Termodinâmica
9.
ACS Omega ; 2(11): 7666-7671, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457324

RESUMO

Uniform and dense perovskite films were realized by the one-step solution-processing method combined with toluene washing. The influence of the delay time applied for toluene washing on the film quality of CH3NH3PbI3 (MAPbI3) was investigated in a comprehensive manner. The optimal delay time was experimentally observed at the critical point when the color of the film changes from transparent to hazy. A detailed X-ray diffraction study suggested that such a color change was caused by the emergence of the MAPbI3 crystal nucleus. This finding provides a convenient method to determine the optimal time accurately. With the optimal delay time, the most uniformly distributed MAPbI3 grains with the largest average grain size and the smoothest surface were obtained. Owing to the realization of homogeneous MAPbI3 films combined with full coverage of perovskite on the substrate achieved by toluene washing at the critical point, open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of 1.11 V, 18.24 mA/cm2, 77.47, and 15.54% were obtained.

10.
Nanoscale ; 9(1): 193-200, 2017 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-27906390

RESUMO

Flexible all-solid-state supercapacitors are crucial to meet the growing needs for portable electronic devices such as foldable phones and wearable electronics. As promising candidates for pseudocapacitor electrode materials, polyaniline (PANI) orderly nanotube arrays are prepared via a simple template electrodeposition method. The structures of the final product were characterized using various characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The obtained PANI nanotube film could be directly used as a flexible all-solid-state supercapacitor electrode. Electrochemical results show that the areal capacitance of a PANI nanotube-based supercapacitor with the deposition cycle number of 100 can achieve a maximum areal capacitance of 237.5 mF cm-2 at a scan rate of 10 mV s-1 and maximum energy density of 24.31 mW h cm-2 at a power density of 2.74 mW cm-2. In addition, the prepared supercapacitor exhibits excellent flexibility under different bending conditions. It retains 95.2% of its initial capacitance value after 2000 cycles at a current density of 1.0 mA cm-1, which displays its superior cycling stability. Moreover, the prepared flexible all-solid-state supercapacitor can power a light-emitting-diode (LED), which meets the practical applications of micropower supplies.

11.
ACS Nano ; 10(1): 1273-82, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26694704

RESUMO

In this study, a flexible asymmetrical all-solid-state supercapacitor with high electrochemical performance was fabricated with Ni/MnO2-filter paper (FP) as the positive electrode and Ni/active carbon (AC)-filter paper as negative electrode, separated with poly(vinyl alcohol) (PVA)-Na2SO4 electrolyte. A simple procedure, such as electroless plating, was introduced to prepare the Ni/MnO2-FP electrode on the conventional laboratory FP, combined with the subsequent step of electrodeposition. Electrochemical results show that the as-prepared electrodes display outstanding areal specific capacitance (1900 mF/cm(2) at 5 mV/s) and excellent cycling performance (85.1% retention after 1000 cycles at 20 mA/cm(2)). Such a flexible supercapacitor assembled asymmetrically in the solid state exhibits a large volume energy density (0.78 mWh/cm(3)) and superior flexibility under different bending conditions. It has been demonstrated that the supercapacitors could be used as a power source to drive a 3 V light-emitting diode indicator. This study may provide an available method for designing and fabricating flexible supercapacitors with high performance in the application of wearable and portable electronics based on easily available materials.


Assuntos
Fontes de Energia Elétrica , Compostos de Manganês/química , Níquel/química , Óxidos/química , Capacitância Elétrica , Técnicas Eletroquímicas , Eletrodos , Papel , Álcool de Polivinil/química , Sulfatos/química
12.
Nanoscale Res Lett ; 10: 192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977663

RESUMO

We reported a simple and effective way of fabricating one-dimensional (1D) graphene oxide nanoscrolls (GONS) from graphene oxide (GO) sheets through shock cooling by liquid nitrogen. The corresponding mechanism of rolling was proposed. One possibility is the formation of ice crystals during the shock cooling process in liquid nitrogen to be the driving force. The other might be due to the uneven stress of the sheets inside or outside ice during the lyophilization. After reducing, graphene nanoscrolls (GNS) exhibited good structural stability, high specific surface area, and high specific capacitance. The capacitance properties were investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrical impedance spectroscopy. A specific capacity of 156 F/g for the GNS at the current density of 1.0 A/g was obtained comparing with the specific capacity of 108 F/g for graphene sheets. Those results indicated that GNS-based rolling structure could be a kind of promising electrode material for supercapacitors and batteries.

13.
Nanoscale Res Lett ; 10: 55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852352

RESUMO

We demonstrated one-step method to fabricate two different sizes of graphene quantum dots (GQDs) through chemical cutting from graphene oxide (GO), which had many advantages in terms of simple process, low cost, and large scale in manufacturing with higher production yield comparing to the reported methods. Several analytical methods were employed to characterize the composition and morphology of the resultants. Bright blue luminescent GQDs were obtained with a produced yield as high as 34.8%. Moreover, how the different sizes affect fluorescence wavelength mechanism was investigated in details.

14.
Sci Rep ; 5: 9672, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25857362

RESUMO

Monodisperse Cu2O of different microstructures, such as cubes, flower-like, and microspheres, have been extensively synthesized by a simple polyol reduction method using different copper salts, i.e. (Cu(acac)2, Cu(OH)2, and Cu(Ac)2·H2O). The effects of copper salts on the morphology of Cu2O were investigated in details through various characterization methods, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy and UV-Vis absorption spectra. The effects of morphology on the electrochemical properties were further studied. Among the different structures, Cu2O with the microspheric morphology shows the highest specific capacitance and the best cycling stability compared with those of the other two structures, thus bear larger volume charge during the electrochemical reaction due to the microspheres of small nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...