Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134135, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574656

RESUMO

Sb(III) and As(III) share similar chemical features and coexist in the environment. However, their oxidase enzymes have completely different sequences and structures. This raises an intriguing question: Could Sb(III)-oxidizing prokaryotes (SOPs) also oxidize As(III), and vice versa? Regarding this issue, previous investigations have yielded unclear, incorrect and even conflicting data. This work aims to address this matter. First, we prepared an enriched population of SOPs that comprises 55 different AnoA genes, lacking AioAB and ArxAB genes. We found that these SOPs can oxidize both Sb(III) and As(III) with comparable capabilities. To further confirm this finding, we isolated three cultivable SOP strains that have AnoA gene, but lack AioAB and ArxAB genes. We observed that they also oxidize both Sb(III) and As(III) under both anaerobic and aerobic conditions. Secondly, we obtained an enriched population of As(III)-oxidizing prokaryotes (AOPs) from As-contaminated soils, which comprises 69 different AioA genes, lacking AnoA gene. We observed that the AOP population has significant As(III)-oxidizing activities, but lack detectable Sb(III)-oxidizing activities under both aerobic and anaerobic conditions. Therefore, we convincingly show that SOPs can oxidize As(III), but AOPs cannot oxidize Sb(III). These findings clarify the previous ambiguities, confusion, errors or contradictions regarding how SOPs and AOPs oxidize each other's substrate.


Assuntos
Antimônio , Oxirredução , Anaerobiose , Aerobiose , Antimônio/metabolismo , Células Procarióticas/metabolismo , Microbiologia do Solo , Bactérias/metabolismo , Bactérias/genética , Poluentes do Solo/metabolismo
2.
Chemosphere ; 352: 141385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316280

RESUMO

Antimony (Sb) and arsenic (As) share similar chemical characteristics and commonly coexist in contaminated environments. It has been reported that the biogeochemical cycles of antimony and arsenic affect each other. However, there is limited understanding regarding microbial coupling between the biogeochemical processes of antimony and arsenic. Here, we aimed to solve this issue. We successfully isolated a novel bacterium, Shinella sp. SbAsOP1, which possesses both Sb(III) and As(III) oxidase, and can effectively oxidize both Sb(III) and As(III) under aerobic and anaerobic conditions. SbAsOP1 exhibits greater aerobic oxidation activity for the oxidation of As(III) or Sb(III) compared to its anaerobic activity. SbAsOP1 also significantly catalyzes the oxidative mobilization of solid-phase Sb(III) under aerobic conditions. The activity of SbAsOP1 in oxidizing solid Sb(III) is 3 times lower than its activity in oxidizing soluble form. It is noteworthy that, in the presence of both Sb(III) and As(III) under aerobic conditions, either As(III) or Sb(III) significantly inhibits the oxidation of Sb(III) or As(III), respectively. In comparison, under anaerobic conditions and in the coexistence of Sb(III) and As(III), As(III) significantly inhibits Sb(III) oxidation, whereas Sb(III) almost completely inhibits As(III) oxidation. These findings suggest that under both aerobic and anaerobic conditions, SbAsOP1 demonstrates a partial preference for Sb(III) oxidation. Additionally, bacterial oxidations of Sb(III) and As(III) mutually inhibit each other to varying degrees. These observations gain a novel understanding of the interplay between the biogeochemical processes of antimony and arsenic.


Assuntos
Arsênio , Rhizobiaceae , Arsênio/metabolismo , Antimônio , Oxirredução , Oxirredutases/metabolismo , Rhizobiaceae/metabolismo
3.
Sci Total Environ ; 916: 169893, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185173

RESUMO

Sb and As are chemically similar, but the sequences and structures of Sb(III) and As(III) oxidase are totally distinct. It is thus interesting to explore whether Sb(III) oxidase oxidizes As(III), and if so, how microbial oxidations of Sb(III) and As(III) influence one another. Previous investigations have yielded ambiguous or even erroneous conclusions. This study aimed to clarify this issue. Firstly, we prepared a consortium of Sb(III)-oxidizing prokaryotes (SOPs) by enrichment cultivation. Metagenomic analysis reveals that SOPs with the Sb(III) oxidase gene, but lacking the As(III) oxidase gene are predominant in the SOP community. Despite this, SOPs exhibit comparable Sb(III) and As(III)-oxidizing activities in both aerobic and anaerobic conditions, indicating that at the microbial community level, Sb(III) oxidase can oxidize As(III). Secondly, we isolated a representative cultivable SOP, Ralstonia sp. SbOX with Sb(III) oxidase gene but without As(III) oxidase gene. Genomic analysis of SbOX reveals that this SOP strain has a complete Sb(III) oxidase (AnoA) gene, but lacks As(III) oxidase (AioAB or ArxAB) gene. It is interesting to discover that, besides its Sb(III) oxidation activities, SbOX also exhibits significant capabilities in oxidizing As(III) under both aerobic and anaerobic conditions. Moreover, under aerobic conditions and in the presence of both Sb(III) and As(III), SbOX exhibited a preference for oxidizing Sb(III). Only after the near complete oxidation of Sb(III) did SbOX initiate rapid oxidation of As(III). In contrast, under anaerobic conditions and in the presence of both Sb(III) and As(III), Sb(III) oxidation notably inhibited the As(III) oxidation pathway in SbOX, while As(III) exhibited minimal effects on the Sb(III) oxidation. These findings suggest that SOPs can oxidize As(III) under both aerobic and anaerobic conditions, exhibiting a strong preference for Sb(III) over As(III) oxidation in the presence of both. This study unveils a novel mechanism of interaction within the Sb and As biogeochemical cycles.


Assuntos
Antimônio , Oxirredutases , Oxirredutases/metabolismo , Anaerobiose , Antimônio/metabolismo , Oxirredução , Bactérias/metabolismo
4.
Sci Rep ; 13(1): 20455, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993472

RESUMO

Arsenic (As), contamination in drinking groundwater resources is commonly environmental problem in many developing countries including Pakistan, with significant human health risk reports. In order to examine the groundwater quality concerning As contamination, its geochemical behavior along with physicochemical parameters, 42 samples were collected from community tube wells from District Bahawalpur, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and associated public health risk. The As concentration detected in groundwater samples varied from 0.12 to 104 µg/L with an average value of 34.7 µg/L. Among 42 groundwater samples, 27 samples were beyond the permitted limit of 10 µg/L recommended by World Health Organization (WHO), for drinking purposes. Statistical analysis result show that the groundwater cations values are in decreasing order such as: Na+ > Mg2+ > Ca2+ > K+, while anions were HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies result depict that the groundwater samples of the study area, 14 samples belong to CaHCO3 type, 5 samples belong to NaCl type, 20 samples belong to Mixed CaMgCl type, and 3 samples belong to CaCl2 type. It can be accredited due to weathering and recharge mechanism, evaporation processes, and reverse ion exchange. Gibbs diagram shows that rock water interaction controls the hydrochemistry of groundwater resources of the study area. Saturation Index (SI) result indicated the saturation of calcite, dolomite, gypsum, geothite, and hematite mineral due their positive SI values. The principal component analysis (PCA) results possess a total variability of 80.69% signifying the anthropogenic and geogenic source of contamination. The results of the exposure-health-risk-assessment method for measuring As reveal significant potential non-carcinogenic risk (HQ), exceeding the threshold level of (> 1) for children in the study area. Water quality assessment results shows that 24 samples were not suitable for drinking purposes.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Humanos , Qualidade da Água , Monitoramento Ambiental , Arsênio/análise , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Água Potável/análise
5.
Environ Sci Technol ; 57(36): 13473-13486, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639510

RESUMO

Dissimilatory arsenate-respiring prokaryotes (DARPs) are considered to be a key impetus of the reductive dissolution of solid-phase arsenic. However, little is known about the interaction between nitrate and DARPs so far. In this study, we showed that nitrate either inhibited or promoted the DARP population-catalyzed reductive mobilization of As in sediments. Metagenomic analysis of the microbial communities in the microcosms after seven days of As release assays suggested that microbes mainly consisted of: Type-I DARPs having potential to reduce NO3- into NO2- and Type-II DARPs having potential to reduce NO3- to NH4+. We further isolated two cultivable DARPs, Neobacillus sp. A01 and Paenibacillus sp. A02, which represent Type-I and -II DARPs, respectively. We observed that nitrate suppressed A01-mediated release of As(III) but promoted A02-mediated release of As(III). Furthermore, we demonstrated that this observation was due to the fact that nitrite, the end product of incomplete denitrification by Type-I DARPs, suppressed the arrA gene expression per cell and growth of all DARPs, whereas ammonium, the end product of dissimilatory nitrate reduction to ammonium (DNRA) by Type-II DARPs, enhanced the arrA gene expression per cell and significantly promoted the growth of all DARPs. These findings suggest that the actual effects of nitrate on DARP population-catalyzed reductive mobilization of arsenic, largely depend on the ratio of Type-I to Type-II DARPs in sediments.


Assuntos
Arsênio , Nitratos , Arseniatos , Nitritos
6.
J Environ Sci (China) ; 125: 582-592, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375940

RESUMO

Many investigations suggest that dissimilatory arsenate-respiring prokaryotes (DARPs) play a key role in stimulating reductive mobilization of As from solid phase into groundwater, but it is not clear how environmental Mn(II) affects the DARPs-mediated reductive mobilization of arsenic. To resolve this issue, we collected soil samples from a realgar tailings-affected area. We found that there were diverse arsenate-respiratory reductase (arr) genes in the soils. The microbial communities had high arsenate-respiring activity, and were able to efficiently stimulate the reductive mobilization of As. Compared to the microcosms without Mn(II), addition of 10 mmol/L Mn(II) to the microcosms led to 23.99%-251.79% increases in the microbial mobilization of As, and led to 133.3%-239.2% increases in the abundances of arr genes. We further isolated a new cultivable DARP, Bacillus sp. F11, from the arsenic-contaminated soils. It completely reduced 1 mmol/L As(V) in 5 days under the optimal reaction conditions. We further found that it was able to efficiently catalyze the reductive mobilization and release of As from the solid phase; the addition of 2 mmol/L Mn(II) led to 98.49%-248.78% increases in the F11 cells-mediated reductive mobilization of As, and 70.6%-104.4% increases in the arr gene abundances. These data suggest that environmental Mn(II) markedly increased the DARPs-mediated reductive mobilization of As in arsenic-contaminated soils. This work provided a new insight into the close association between the biogeochemical cycles of arsenic and manganese.


Assuntos
Arsênio , Água Subterrânea , Arsênio/metabolismo , Arseniatos/metabolismo , Solo
7.
Water Res ; 224: 119097, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148700

RESUMO

It was shown that dissimilatory arsenate[As(V)]-respiring prokaryotes (DARPs) play important roles in driving the formation of arsenic-contaminated groundwater. However, because it is tough to isolate cultivable DARPs, the physiological and functional features of DARPs have not been fully elucidated yet; this impedes a deep understanding of the mechanisms for the dynamic fluctuations of As concentrations in contaminated groundwater. Here, four new DARPs were isolated from As-contaminated aquifers using the microbial enrichment technique, which were referred to as Bacillus sp Z01, Bacillus sp. Z02. Achromobacter sp. Z03 and Intrasporangium sp. Z04. We found that the presence of As(V) significantly inhibited the growth of Z03 and Z04, but promoted the growth of Z01 and Z02. The four strains possess significant As(V)-, NO3-- and Fe(III)-respiring activities; however, their activities and preferred electron donors differ greatly. NO3- was finally reduced to NO2- by Z01 and Z02, and to N2O and N2 by Z03 and Z04. The optimal pH value for their As(V)-respiring activity was 5 for Z01, and 4 for Z02, Z03 and Z04, whereas their optimal temperature varied between 30 and 37 °C. Microcosm assays with As-contaminated sediments and scorodite suggested that the four DARP strains had highly differential activities to reduce and mobilize solid As(V) under anaerobic conditions. Although the four DARPs have high soluble As(V)-respiring activities, their activities to mobilize solid As are negligibly low, accounting for only 0.006-0.484% of their each corresponding soluble As(V)-respiring activity. Moreover, extreme inconsistency between the size orders of their activities to respire soluble As(V) and to catalyze As reductive mobilization was observed. It is interesting to see that Z04 had high As(V)-respiring activity, but had little ability to catalyze the reductive mobilization of As and Fe. These observations suggest that As(V)-respiring activity is required, but not enough to catalyze the reductive mobilization of solid As(V). These findings provide new knowledge about the physiological and functional features of DARPs, and are helpful for a better understanding of the roles of DARPs in reductive mobilization and release of As from solid phase into groundwater.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arseniatos/metabolismo , Arsênio/análise , Bactérias/metabolismo , Compostos Férricos/metabolismo , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Dióxido de Nitrogênio/metabolismo , Poluentes Químicos da Água/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-35897434

RESUMO

Fluoride (F-) contamination in drinking groundwater is a significant human health risk in Pakistan. Moreover, high fluoride pollution in drinking water causes a variety of disorders, including dental, neurological, and skeletal fluorosis. The aim of this research was to evaluate the health risk of elevated fluoride in groundwater and its suitability assessment for drinking purposes. The total of (n = 37) samples were collected from community tube wells of Quetta Valley, Balochistan, Pakistan. The results show a mean pH value of 7.7, TDS of 404.6 mg/L, EC of 500 µs/cm, depth of 96.8 feet, and turbidity of 1.7 nephelometric turbidity units. The mean values of HCO3-, Ca2+, Mg2+, and Na+, were 289.5, 47.5, 30.6, and 283.3 mg/L, respectively. The mean values of SO42-, NO3-, K+, Cl-, and Fe2+, were 34.9, 1.0, 1.6, 25.6, and 0.01 mg/L, respectively. The F- concentration in the groundwater varied between 0.19 and 6.21, with a mean value of 1.8 mg/L, and 18 samples out of 37 were beyond the WHO recommended limit of 1.5 mg/L. The hydrochemical analysis results indicated that among the groundwater samples of the study area, 54% samples were Na-HCO3 type and 46% were mixed CaNaHCO3 type. The saturation indices of the mineral phases reveal that the groundwater sources of the study area were saturated with CaCO3 and halide minerals due to their positive (SI) values. Such minerals include calcite, dolomite, gypsum, and fluorite. The principal component analysis results reveal that the groundwater sources of the study area are contaminated due to geological and anthropogenic actions. The health risk assessment results of the F- concentrations show the ranges of ADDingestion for children, females, and males in the Quetta Valley, and their mean values were observed to be 0.093052, 0.068825, and 0.065071, respectively. The HQingestion mean values were 1.55086, 1.147089, and 1.084521 for children, females, and males, respectively. It was noticed that children had the highest maximum and average values of ADDingestion and HQingestion in the research area, indicating that groundwater fluoride intake poses the greatest health risk to children. The water quality index (WQI) analyses show that 44% of the samples belong to the poor-quality category, 49% were of good quality, and 8% of the samples of the study area belong to the excellent category.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Água Potável/análise , Monitoramento Ambiental/métodos , Feminino , Fluoretos/análise , Água Subterrânea/análise , Humanos , Masculino , Minerais/análise , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
9.
Environ Pollut ; 308: 119698, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787423

RESUMO

Dissimilatory arsenate-respiring prokaryotes (DARPs) are considered to be the major drive of the reductive mobilization of arsenic from solid phases. However, it is not fully understood how phosphate, a structural analog of arsenate, affects the DARPs-mediated arsenic mobilization. This work aimed to address this issue. As-contaminated soils were collected from a Shimen Realgar Mine-affected area. We identified a unique diversity of DARPs from the soils, which possess high As(V)-respiring activities using one of multiple small organic acids as the electron donor. After elimination of the desorption effect of phosphate on the As mobilization, the supplement of additional 10 mM phosphate to the active slurries markedly increased the microbial community-mediated reductive mobilization of arsenic as revealed by microcosm tests; this observation was associated to the fact that phosphate significantly increased the As(V)-respiratory reductase (Arr) gene abundances in the slurries. To confirm this finding, we further obtained a new DARP strain, Priestia sp. F01, from the samples. We found that after elimination of the chemical effect of phosphate, the supplement of 10 mM phosphate to the active slurries resulted in an 82.2% increase of the released As(III) in the solutions, which could be contributed to that excessive phosphate greatly increased the Arr gene abundance, and enhanced the transcriptional level of arrA gene and the bacterial As(V)-respiring activity of F01 cells. Considering that phosphate commonly coexists with As in the environment, and is a frequently-used fertilizer, these findings are helpful for deeply understanding why As concentrations in contaminated groundwater are dynamically fluctuated, and also provided new knowledge on the interactions between the biogeochemical processes of P and As.


Assuntos
Arsênio , Água Subterrânea , Arseniatos/metabolismo , Arsênio/metabolismo , Bactérias/metabolismo , Catálise , Água Subterrânea/química , Fosfatos/metabolismo , Solo/química
10.
Chemosphere ; 273: 129672, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33524754

RESUMO

Microbial oxidation of As(III) by biofilm bioreactors followed by adsorption is a promising and environment friendly approach to remediate As(III) contaminated groundwater; however, poor activity, stability and expandability of the bioreactors hampered their industrious applications. To resolve this issue, we constructed a new biofilm bioreactor using a powerful chemoautotrophic As(III)-oxidizing bacterium Rhizobium sp. A219. This strain has strong ability to form biofilms and possesses very high As(III)-oxidizing activities in both planktonic and biofilm forms. Perlites were used as the biofilm carriers. Long-term operations suggest that the bioreactor has very high efficiency, stability and scalability under different geochemical conditions, and it is cheap and easy to construct and operate. During the operations, it is only required to supply air, nothing else. All the common contaminants in groundwater slightly affected the bioreactor As(III)-oxidizing activity. The common contaminants in groundwater can be largely removed through assimilation by the bacterial cells as nutrition. The bioreactor completely oxidize 1.0, 5.0, 10.0, 20.0 and 30.0 mg/L As(III) in 12, 18, 20, 25 and 30 min, respectively. Approximately 18, 18, 12, 12 and 21 min were needed to oxidize 1.1 mg/L As(III) at 20, 25, 30, 35 and 40 °C, respectively. The bioreactor works well under the pH values of 5-8, and the most optimal was 7.0. The data suggest that this bioreactor possesses the highest efficiency and stability, and thus has the great potential for industrial applications among all the described As(III)-oxidizing bioreactors derived from a single bacterium.


Assuntos
Arsênio , Arsenitos , Biofilmes , Reatores Biológicos , Cinética , Oxirredução
11.
Ecotoxicology ; 30(7): 1437-1445, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33040243

RESUMO

Arsenite (As(III)) was considered to be of great concern in acid mine drainage (AMD). A promising approach for cleaning up of arsenite from AMD is microbial oxidation of As(III) followed by adsorptions. However, there is virtually no research about the acidophilic bioreactor for As(III) oxidation so far. In this study, we formed a new biofilm bioreactor with a consortium of acidophilic As(III) oxidation bacteria. It is totally chemoautotrophic, with no need to add any carbon or other materials during the operations. It works well under pH 3.0-4.0, capable of oxidizing 1.0-20.0 mg/L As(III) in 3.0-4.5 h, respectively. A continuous operation of the bioreactor suggests that it is very stable and sustainable. Functional gene detection indicated that the biofilms possessed a unique diversity of As(III) oxidase genes. Taken together, this acidophilic bioreactor has great potential for industrial applications in the cleaning up of As(III) from AMD solution.


Assuntos
Arsenitos , Bactérias/genética , Biofilmes , Reatores Biológicos , Oxirredução
12.
World J Clin Cases ; 8(22): 5501-5512, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33344540

RESUMO

Coronavirus disease-2019 (COVID-19) is spreading throughout the world. Chest radiography and computed tomography play an important role in disease diagnosis, differential diagnosis, severity evaluation, prognosis prediction, therapeutic effects assessment and follow-up of patients with COVID-19. In this review, we summarize knowledge of COVID-19 pneumonia that may help improve the abilities of radiologists to diagnose and evaluate this highly infectious disease, which is essential for epidemic control and preventing new outbreaks in the short term.

13.
Ecotoxicology ; 29(1): 86-96, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832832

RESUMO

Microbial arsenic (As) methylation plays important roles in the As biogeochemical cycle. However, little is known about the diversity and functions of As-methylating microorganisms from the tailings of a Realgar Mine, which is characterized as containing extremely high concentrations of As. To address this issue, we collected five samples (T1-T5) from the tailings of Shimen Realgar Mine. Microcosm assays without addition of exogenous As and carbon indicated that all the five samples possess significant As-methylating activities, producing 0.8-5.7 µg/L DMAsV, and 1.1-10.7 µg/L MMAsV with an exception of T3, from which MMAsV was not detectable after 14.0 days of incubation. In comparison, addition of 20.0 mM lactate to the microcosms significantly enhanced the activities of these samples; the produced DMAsV and MMAsV are 8.0-39.7 µg/L and 5.8-38.3 µg/L, respectively. The biogenic DMAsV shows significant positive correlations with the Fe concentrations and negative correlations with the total nitrogen concentrations in the environment. A total of 63 different arsM genes were identified from the five samples, which code for new or new-type ArsM proteins, suggesting that a unique diversity of As-methylating microbes are present in the environment. The microbial community structures of the samples were significantly shaped by the environmental total organic carbon, total As contents and NO3- contents. These data help to better understand the microorganisms-catalyzed As methylation occurred in the environment with extremely high contents of As.


Assuntos
Arsênio , Mineração , Microbiota , Microbiologia do Solo
14.
Ecotoxicol Environ Saf ; 189: 109946, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31759742

RESUMO

The soils near the abandoned Shimen Realgar Mine are characterized by containing extremely high contents of total and soluble arsenic. To determine the microbial reactions and environmental factors affecting the mobilization and release of arsenic from soils phase into pore water, we collected 24 soil samples from the representative points around the abandoned Shimen Realgar Mine. They contained 8310.84 mg/kg total arsenic and 703.21 mg/kg soluble arsenic in average. The soluble arsenic in the soils shows significant positive and negative correlations with environmental SO42-/TOC/pH/PO43-, and Fe/Mn, respectively. We found that diverse dissimilatory As(V)-respiring prokaryotes (DARPs) and As(III)-oxidizing bacteria (AOB) exist in all the examined soil samples. The activities of DARPs led to 65-1275% increase of soluble As(III) in the examined soils after 21.0 days of anaerobic incubation, and the microbial dissolution and releases of arsenic show significant positive and negative correlations with the environmental pH/TN and NH4+/PO43-, respectively. In comparison, the activities of AOB led to 24-346% inhibition of the dissolved oxygen-mediated dissolution of arsenic in the soils, and the AOB-mediated releases of As(V) show significant positive and negative correlations with the environmental SO42- and pH/NH4+, respectively. The microbial communities of 24 samples contain 54 phyla of bacteria that show extremely high diversities. Total arsenic, TOC, NO3- and pH are the key environmental factors that indirectly controlled the mobilization and release of arsenic via influencing the structures of the microbial communities in the soils. This work gained new insights into the mechanism for how microbial communities catalyze the dissolution and releases of arsenic from the soils with extremely high contents of arsenic.


Assuntos
Arsênio/análise , Microbiologia do Solo , Poluentes do Solo/análise , Aerobiose , Anaerobiose , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Nitratos/análise , Solo/química , Solubilidade
15.
Sci Total Environ ; 694: 133802, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756794

RESUMO

Airborne fungi are a primary component of bioaerosols and proved to impact human health and climatic change. Deoxyribonucleic acid (DNA) is the essential component of most living organisms with relatively stable physicochemical properties. Little is known about day-night and pollution-episode differences of DNA mass ratio and fungal community in fine particles (PM2.5) during serious winter haze events in China. Here we collected twenty-nine PM2.5 samples every day and night during an entire winter haze evolution process in a megacity of Central China, Wuhan. DNA extraction and high-throughput sequencing methods were adopted to analyze fungal community. Results showed that mass ratio of DNA in PM2.5 (RD/P %) changed with pollution process and showed significant negative correlations with PM2.5 concentration (r = -0.72, P < 0.05) and temperature (r = -0.74, P < 0.05). RD/P became lower (4.40 × 10-4%) after haze episodes than before (7.16 × 10-4%). RD/P of night-samples (1.98 × 10-4-4.97 × 10-4%) were all lower than those for day-samples (3.05 × 10-4-9.99 × 10-4%) for the same period. The fungal species richness became much lower (76 operational taxonomic units (OTUs)) after haze episodes than before (198 OTUs). The species richness of night-samples (119-537 OTUs) were all higher than those of day-samples (71-198 OTUs) for the same period. The OTUs specially owned by night-samples were also more than those by day-samples. Fungal community diversity showed random variations. The fungal community composition of each sample was classified from phylum to genus level. Pathogenic fungi accounted for 8.60% of the entire fungal community. The significantly enriched fungal taxa in the night-sample group (29 taxa) were also much more than that in the day-sample group (9 taxa), which could explain the higher species richness of airborne fungi community in the night during the haze evolution episodes. These findings may serve as an important reference or inspiration to other aerosol studies focusing on human health and behavior of aerosols in the atmosphere.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Monitoramento Ambiental , Material Particulado/análise , Atmosfera , Bactérias , China , DNA , Fungos , Estações do Ano
16.
Front Neurosci ; 13: 415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114477

RESUMO

This study investigated the degree of brain functional impairment in persistent somatoform pain disorder (PSPD) by examining changes in the patterns of brain functional hubs. Resting-state functional magnetic resonance imaging was performed in 21 PSPD patients with headache as the main symptom and 17 sex- and age-matched healthy controls. Degree centrality (DC) analysis as well as the connectivity among these hubs by functional connectivity (FC) analysis and Granger causality analysis (GCA) were performed to characterize abnormal brain networks in PSPD (Gaussian random field corrected: P < 0.001, Z > 3.09). The relationships between DC and connectivity and clinical parameters were also examined. DC values in the bilateral inferior occipital gyrus (IOG), bilateral calcarine fissure (CAL), and left paracentral lobule (PCL) and FC values of right IOG-left CAL, right IOG-right CAL, right IOG-left IOG, left CAL-right CAL, left CAL-left IOG, left CAL-left PCL, right CAL-left PCL, and left IOG-left PCL were lower in PSPD patients as compared to controls. A negative causal effect from the left CAL to the left paracentral lobule and a positive effect from the right CAL to the right IOG were observed in PSPD patients. Abnormal DC, FC, and signed-path coefficients in PSPD patients were negatively correlated with self-rating anxiety and depression scale scores. These results indicate that altered functional hubs and connectivity patterns in the somatosensory cortex may reflect emotional disturbance in PSPD patients.

17.
Ecotoxicology ; 28(5): 528-538, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119594

RESUMO

It was well established that microbial communities are the major drive for the formation of arsenic-contaminated groundwater. However, it remains to be elucidated for how nitrate/nitrite affects the microorganisms-catalyzed dissolution and reduction of arsenic. To address this issue, we collected soil samples containing high-contents of arsenic from the Shimen Realgar Mine area. Microcosm assay indicated that addition of nitrate/nitrite significantly inhibited the dissolution, reduction and release of As and Fe caused by the biological catalysis of microbial communities in the soils, meanwhile nitrate/nitrite was reduced into N2. To further investigate the molecular mechanism of this finding, we used a representative dissimilatory arsenate-respiring strain Shewanella sp. GL90 from the soils to perform the arsenic release assay. GL90 can efficiently catalyze the reductive dissolution, and promote the release of As and Fe in soils. It is interesting to see that the addition of nitrate/nitrite to the soils led to marked decreases in the GL90-mediated dissolution of As and Fe in the soils. Moreover, we found that this finding was attributed to that nitrate/nitrite significantly inhibited the transcription of the gene of the respiratory arsenate reductase protein in GL90 cells. This work provided new insights into the mechanisms for the coupling of As, N and Fe geochemical cycles in arsenic-rich soils, and for how environmental factors affect As concentration in groundwater.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Água Subterrânea/química , Ferro/metabolismo , Nitratos/análise , Nitritos/análise , Poluentes do Solo/metabolismo , China , Oxirredução , Microbiologia do Solo , Poluentes do Solo/análise , Solubilidade
18.
Int J Syst Evol Microbiol ; 69(3): 791-797, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30676307

RESUMO

An arsenic-resistant strain, CB3T, was isolated from arsenic-rich aquifers at the Jianghan Plain in Hubei, China. Phylogenetic and biochemical analysis suggested that it should represent a new species of the genus Pseudaminobacter in the family Phyllobacteriaceae. The 16S rRNA gene of CB3T shared the highest sequence similarities to those of the type strains Pseudaminobacter defluvii THI 051T (97.8 % identity) and Pseudaminobacter salicylatoxidans BN12T (97.4 %). The DNA-DNA relatedness values of CB3T with respect to strains belonging to the genus Pseudaminobacter were less than 70 %. The fatty acid profile of CB3T consisted of C16 : 0, cyclo-C19 : 0ω8c and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) as major components. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine and diphosphatidylglycerol. The DNA G+C content was 61.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain CB3T was distinct from previously described Pseudaminobacter species. Therefore, we propose that strain CB3T represents a novel species of the genus Pseudaminobacter, Pseudaminobacterarsenicus sp. nov., strain CB3T (=CCTCC AB2016116T=KCTC 52625T) is designated as the type strain.


Assuntos
Arsênio , Água Subterrânea/microbiologia , Phyllobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Phyllobacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Molecules ; 23(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558111

RESUMO

Highly acidic peptides with no disulfide bridges are widely present in the scorpion venoms; however, none of them has been functionally characterized so far. Here, we cloned the full-length cDNA of a short-chain highly acidic peptide (referred to as HAP-1) from a cDNA library made from the venom glands of the Chinese scorpion Mesobuthus martensii Karsch. HAP-1 contains 19 amino acid residues with a predicted IP value of 4.25. Acidic amino residues account for 33.3% of the total residues in the molecule of HAP-1. HAP-1 shows 76⁻98% identities to some scorpion venom peptides that have not yet been functionally characterized. Secondary structure prediction showed that HAP-1 contains a beta-sheet region (residues 9⁻17), and two coiled coil regions (residues 1⁻8 and 18⁻19) located at the N-terminal and C-terminal regions of the peptide, respectively. Antimicrobial assay showed that HAP-1 does not have any effect on the growth of the bacterium Staphylococcus aureus AB94004. However, it potently inhibits the antimicrobial activity of a 13-mer peptide from M. martensii Karsch against Staphylococcus aureus AB94004. This finding is the first characterization of the function of such highly acidic peptides from scorpions.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Venenos de Escorpião/química , Escorpiões/química , Animais , Peptídeos/química , Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos
20.
Ecotoxicol Environ Saf ; 165: 1-10, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30173020

RESUMO

Arsenite-oxidizing bacteria (AOB) play a key role in the biogeochemical cycle of arsenic in the environment, and are used for the bioremediation of As contaminated groundwater; however, it is not yet known about how arsenic affects biofilm formations of AOB, and how biofilm formations affect bacterial arsenite-oxidizing activities. To address these issues, we isolated seven novel AOB strains from the arsenic-contaminated soils. They can completely oxidize 1.0 mM As(III) in 22-60 h. Their arsenite oxidase sequences show 43-99% identities to those of other known AOB. Strains Cug1, Cug2, Cug3, Cug4, and Cug6 are able to form biofilms with thickness of 15-95 µm, whereas Cug8 and Cug9 cannot form biofilms. It is interesting to see that arsenite inhibited the biofilm formations of heterotrophic AOB strains, but promoted the biofilm formations of autotrophic strains in a concentration-dependent manner. The arsenite-oxidizing rates of Cug1 and Cug4 biofilms are 31.6% and 27.6% lower than those of their suspension cultures, whereas the biofilm activities of other strains are similar to those of their suspension cultures. The biofilm formation significantly promoted the bacterial resistance to arsenic. This work is the first report on the complex correlations among environmental arsenic, bacterial biofilm formations and bacterial arsenite-oxidizing activities. The data highlight the diverse lifestyle of different AOB under arsenic stress, and provide essential knowledge for the screening of efficient AOB strains used for constructions of bioreactors.


Assuntos
Arsenitos/metabolismo , Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Poluentes do Solo/metabolismo , Arsênio/metabolismo , Arsenitos/toxicidade , Processos Autotróficos , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Biodegradação Ambiental , Processos Heterotróficos , Oxirredução , Oxirredutases/genética , Microbiologia do Solo , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...