Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 23(13): 5158-5163, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34152156

RESUMO

Industrially important triaryl phosphites, traditionally prepared from PCl3, have been synthesized by a diphenyl diselenide-catalyzed one-step procedure involving white phosphorus and phenols, which provides a halogen- and transition metal-free way to these compounds. Subsequent oxidation of triaryl phosphites produces triaryl phosphates and triaryl thiophosphates. Phosphorotrithioates are also prepared efficiently from aromatic thiols and aliphatic thiols.

2.
Nanotechnology ; 31(35): 355601, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32554887

RESUMO

Building core-shell structures is a valuable method of enhancing the oxidation-resistance performance of Cu nanoparticles for practical applications in the field of printed circuit boards. In this study, Cu@Ni core-shell nanoparticles are synthesized via an injection solution approach utilizing Cu seeds produced during the reactions to induce the epitaxial growth of Ni shells. The thickness of the Ni shell can be controlled by varying the Cu:Ni molar ratios in the injected precursor solution, whereas changing the injection rate of the Cu precursor solution affects the size of the Cu seeds and thus controls the eventual size of the core-shell nanoparticles. Thermogravimetric analysis reveals a superior thermal stability against oxidation for Cu@Ni core-shell nanoparticles, as compared with Cu nanoparticles. The oxidation resistance of Cu@Ni conductive films increases with an increase in the Ni:Cu ratio, while the conductivity increases with a decrease in the Ni:Cu ratio. A relatively low resistivity of 27.4 µΩ cm is achieved for Cu@Ni conductive films. The results demonstrate that coating Cu nanoparticles with Ni shells via epitaxial growth can form closed shells with smooth surfaces which are valuable for Cu nanoparticles in applications where oxidation resistance is a requirement .

3.
Materials (Basel) ; 10(2)2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28772564

RESUMO

Zirconium based metal organic frameworks (Zr-MOFs) have become popular in engineering studies due to their high mechanical stability, thermostability and chemical stability. In our work, by using a theoretical kinetic adsorption isotherm, we can exert MOFs to an acid dye adsorption process, experimentally exploring the adsorption of MOFs, their external behavior and internal mechanism. The results indicate their spontaneous and endothermic nature, and the maximum adsorption capacity of this material for acid orange 7 (AO7) could be up to 358 mg·g-1 at 318 K, estimated by the Langmuir isotherm model. This is ascribed to the presence of an open active metal site that significantly intensified the adsorption, by majorly increasing the interaction strength with the adsorbates. Additionally, the enhanced π delocalization and suitable pore size of UiO-66 gave rise to the highest host-guest interaction, which further improves both the adsorption capacity and separation selectivity at low concentrations. Furthermore, the stability of UiO-66 was actually verified for the first time, through comparing the structure of the samples before and after adsorption mainly by Powder X-ray diffraction and thermal gravimetric analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...