Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121638, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959766

RESUMO

In the sludge dewatering process, a formidable challenge arises due to the robust interactions between extracellular polymeric substances (EPS) and bound water. This study introduces a novel, synergistic conditioning method that combines iron (Fe2+)/peroxymonosulfate (PMS) and polyacrylamide (PAM) to significantly enhance sludge dewatering efficiency. The application of the Fe2+/PMS-PAM conditioning method led to a substantial reduction in specific filtration resistance (SFR) by 82.75% and capillary suction time (CST) by 80.44%, marking a considerable improvement in dewatering performance. Comprehensive analyses revealed that pre-oxidation with Fe2+/PMS in the Fe2+/PMS-PAM process effectively degraded EPS, facilitating the release of bound water. Subsequently, PAM enhanced the flocculation of fine sludge particles resulting from the advanced oxidation processes (AOPs). Furthermore, analysis based on the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory demonstrated shifts in interaction energies, highlighting the breakdown of energy barriers within the sludge and a transition in surface characteristics from hydrophilic (3.79 mJ m-2) to hydrophobic (-61.86 mJ m-2). This shift promoted the spontaneous aggregation of sludge particles. The innovative use of the Flory-Huggins theory provided insights into the sludge filtration mechanism from a chemical potential perspective, linking these changes to SFR. The introduction of Fe2+/PMS-PAM conditioning disrupted the uniformity of the EPS-formed gel layer, significantly reducing the chemical potential difference between the permeate and the water in the gel layer, leading to a lower SFR and enhanced dewatering performance. This thermodynamic approach significantly enhances our understanding of sludge dewatering and conditioning. These findings represent a paradigm shift, offering innovative strategies for sludge treatment and expanding our comprehension of dewatering and conditioning techniques.

2.
J Environ Manage ; 354: 120383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382434

RESUMO

The research presented herein explores the development of a novel iron-carbon composite, designed specifically for the improved treatment of high-concentration antibiotic wastewater. Employing a nitrogen-shielded thermal calcination approach, the investigation utilizes a blend of reductive iron powder, activated carbon, bentonite, copper powder, manganese dioxide, and ferric oxide to formulate an efficient iron-carbon composite. The oxygen exclusion process in iron-carbon particles results in distinctive electrochemical cells formation, markedly enhancing wastewater degradation efficiency. Iron-carbon micro-electrolysis not only boosts the biochemical degradability of concentrated antibiotic wastewater but also mitigates acute biological toxicity. In response to the increased Fe2+ levels found in micro-electrolysis wastewater, this research incorporates Fenton oxidation for advanced treatment of the micro-electrolysis byproducts. Through the synergistic application of iron-carbon micro-electrolysis and Fenton oxidation, this research accomplishes a significant decrease in the initial COD levels of high-concentration antibiotic wastewater, reducing them from 90,000 mg/L to about 30,000 mg/L, thus achieving an impressive removal efficiency of 66.9%. This integrated methodology effectively reduces the pollutant load, and the recycling of Fe2+ in the Fenton process additionally contributes to the reduction in both the volume and cost associated with solid waste treatment. This research underscores the considerable potential of the iron-carbon composite material in efficiently managing high-concentration antibiotic wastewater, thereby making a notable contribution to the field of environmental science.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Ferro , Eliminação de Resíduos Líquidos/métodos , Antibacterianos , Pós , Eletrólise/métodos , Oxirredução , Peróxido de Hidrogênio
3.
Environ Res ; 234: 116420, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327838

RESUMO

This study investigated the combined effects of polymeric aluminum chloride (PAC) and polyacrylamide (PAM) on sludge dewatering, aiming to unveil underlying mechanisms. Co-conditioning with 15 mg g-1 PAC and 1 mg g-1 PAM achieved optimal dewatering, reducing specific filtration resistance (SFR) of co-conditioned sludge to 4.38 × 1012 m-1kg-1, a mere 48.1% of raw sludge's SFR. Compared with the CST of raw sludge (36.45 s), sludge sample can be significantly reduced to 17.7 s. Characterization tests showed enhanced neutralization and agglomeration in co-conditioned sludge. Theoretical calculations revealed elimination of interaction energy barriers between sludge particles post co-conditioning, converting sludge surface from hydrophilic (3.03 mJ m-2) to hydrophobic (-46.20 mJ m-2), facilitating spontaneous agglomeration. Findings explain improved dewatering performance. Based on Flory-Huggins lattice theory, connection between polymer structure and SFR was established. Raw sludge formation triggered significant change in chemical potential, increasing bound water retention capacity and SFR. In contrast, co-conditioned sludge exhibited thinnest gel layer, reducing SFR and significantly improving dewatering. These findings represent a paradigm shift, shedding new light on fundamental thermodynamic mechanisms of sludge dewatering with different chemical conditioning.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Cloreto de Alumínio , Floculação , Polímeros/química , Filtração , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...