Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 769: 144489, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465632

RESUMO

Cyanobacterial harmful algal blooms (CyanoHABs) bring economic loss, damage aquatic ecosystems, and produce cyanobacterial toxins that threaten human health. Algicidal bacteria as pathogens can expediate the decline of CyanoHABs. In this study, a Streptomyces globisporus strain (designated G9), isolated from soil near a eutrophic pond, showed high algicidal activity against Microcystis aeruginosa. Experimental results show that G9 preyed on Microcystis through cell-to-cell contact: (1) the hyphae of G9 killed cyanobacterial cells by twining around them, while cells beyond the reach of G9 hyphae were in normal shapes; (2) No algicides were detectable in the supernatant of G9 cultures or G9-Microcystis cocultures. The algicidal ratio of G9 to M. aeruginosa reached 96.7% after 6 days. G9 selectively killed the tested cyanobacterial strains, while it had only minor impacts on the growth of tested Chlorophyceae. Differential gene expression studies show that G9 affected the expression of key genes of M. aeruginosa involved in photosynthesis, microcystin synthesis and cellular emergency responses. Further, the microcystin-LR content decreased gradually with G9 treatment. As the first reported Streptomyces sp. with algicidal (predation) activity requiring cell-to-cell contact with target prey, G9 is a good candidate for the exploration of additional cyanobacteria-bacteria interactions and the development of novel strategies to control CyanoHABs.


Assuntos
Microcystis , Streptomyces , Ecossistema , Proliferação Nociva de Algas , Humanos , Microcistinas
2.
Sci Total Environ ; 650(Pt 1): 34-43, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30195130

RESUMO

Microcystis aeruginosa and hepatotoxic microcystins produced by it have posed a severe threat to aquatic ecological security and human health. In this study a Streptomyces amritsarensis HG-16, showing high algicidal activity against M. aeruginosa and strong inhibitory effect on microcystin synthesis, was obtained by screening some anti-Fusarium sp. microbial strains isolated before in our laboratory. HG-16 bound cyanobacterial cells by mycelia to form flocs and killed M. aeruginosa by secreting active substances, which were proteinase K resistant and stable in the temperature range of 35-75 °C and pH range of 3-11. HG-16 removed M. aeruginosa of 105 and 106 cell mL-1 cell densities in similar rate and was active against all the tested harmful unicellular and filamentous cyanobacteria. Results of differential gene expression analysis indicated that HG-16 affected the photosynthesis system and microcystin synthesis of M. aeruginosa. Accordingly, the algicidal activity of HG-16 was light-dependent, and microcystin synthesis of M. aeruginosa decreased by 91.2% with HG-16 treatment. Thus, it is promising to utilize HG-16 to mitigate harmful cyanobacterial blooms, inhibit microcystin synthesis and control plant disease caused by Fusarium.spp. through irrigating farmland with eutrophic water applied HG-16.


Assuntos
Herbicidas/farmacologia , Microcistinas/biossíntese , Microcystis/efeitos dos fármacos , Streptomyces/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...