Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(12): 4739-4758, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38863138

RESUMO

Despite recent success in the computational approaches of cyclic peptide design, current studies face challenges in modeling noncanonical amino acids and nonstandard cyclizations due to limited data. To address this challenge, we developed an integrated framework for the tailored design of stapled peptides (SPs) targeting the bromodomain of CREBBP (CREBBP-BrD). We introduce a powerful combination of anchored stapling and hierarchical molecular dynamics to design and optimize SPs by employing the MultiScale integrative conformational dynamics assessment (MSICDA) strategy, which involves an initial virtual screening of over 1.5 million SPs, followed by comprehensive simulations amounting to 154.54 µs across 5418 of instances. The MSICDA method provides a detailed and holistic stability view of peptide-protein interactions, systematically isolated optimized peptides and identified two leading candidates, DA#430 and DA#99409, characterized by their enhanced stability, optimized binding, and high affinity toward the CREBBP-BrD. In cell-free assays, DA#430 and DA#99409 exhibited 2- to 12-fold greater potency than inhibitor SGC-CBP30. Cell studies revealed higher peptide selectivity for cancerous versus normal cells over small molecules. DA#430 combined with (+)-JQ-1 showed promising synergistic effects. Our approach enables the identification of peptides with optimized binding, high affinity, and enhanced stability, leading to more precise and effective cyclic peptide design, thereby establishing MSICDA as a generalizable and transformative tool for uncovering novel targeted drug development in various therapeutic areas.


Assuntos
Proteína de Ligação a CREB , Simulação de Dinâmica Molecular , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/antagonistas & inibidores , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Domínios Proteicos , Conformação Proteica , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Linhagem Celular Tumoral , Ligação Proteica
2.
Bioengineering (Basel) ; 11(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534519

RESUMO

In this study, we advance our exploration of Apolipoprotein A-I (apoA-I) peptide analogs (APAs) for their application in nanodisc (ND) assembly, focusing on the dynamic conformational characteristics and the potential for drug delivery. We explore APA-ND interactions with an emphasis on curcumin encapsulation, utilizing molecular dynamic simulations and in vitro assessments to evaluate the efficacy of various APA-ND formulations as drug carriers. The methodological approach involved the generation of three unique apoA-I α-11/3 helical mimics, resulting in fifteen distinct APAs. Their structural integrity was rigorously assessed using ColabFold-AF2, with particular attention to pLDDT and pTM scores. Extensive molecular dynamics simulations, covering 1.7 µs across 17 ND systems, were conducted to investigate the influence of APA sequence variations on ND stability and interactions. This study reveals that the composition of APAs, notably the presence of Proline, Serine, and Tryptophan, significantly impacts ND stability and morphology. Oligomeric APAs, in particular, demonstrated superior stability and distinct interaction patterns compared to their monomeric counterparts. Additionally, hydrodynamic diameter measurements over eight weeks indicated sequence-dependent stability, highlighting the potential of specific APA configurations for sustained colloidal stability. In vitro study successfully encapsulated curcumin in [AA]3/DMPC ND formulations, revealing concentration-dependent stability and interaction dynamics. The findings underscore the remarkable capability of APA-NDs to maintain structural integrity and efficient drug encapsulation, positioning them as a promising platform for drug delivery. The study concludes by emphasizing the tunability and versatility of APA-NDs in drug formulation, potentially revolutionizing nanomedicine by enabling customized APA sequences and ND properties for targeted drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...