Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 21(6): 2077-2092, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33825319

RESUMO

There are wide genomic and phenotypic differences between Asian and European pig breeds, yet the current reference genome is the European Duroc pig genome. A high-quality pig genome is lacking for genetic analysis of agricultural traits in Asian pigs. Here, using a hybrid approach, a high-quality reference genome (MSCAAS v1) for the Asian Meishan breed is assembled with a contig N50 size of 48.05 Mb. MSCAAS v1 outperforms the Duroc genome as a reference genome for Asian breeds. Genomic comparison reveals 49,103 structural variations (SVs) between Meishan and Duroc, 4.02% of which are Asian-specific SVs (AP-SVs). Notably, a 30-Mb hotspot for AP-SVs on chromosome X enriched for genes associated with Asian-pig-specific phenotypes is present in Asian domestic pig breeds, but absent in Asian wild boars, suggesting that Asian domestic breeds share a common ancestor. Interbreed transcriptomics reveals transcriptional suppression roles of AP-SVs in multiple tissues. Finally, transcriptional regulation in the intron of IGF2R is reported, as genomic SV (274-bp deletion) in Tibetan pig limits its growth compared to domestic pig breeds. In summary, this study provides insights regarding the genetic changes underlying pig domestication and presents a benchmark-setting resource for the utilization of agricultural valuable loci in Asian pigs.


Assuntos
Domesticação , Genoma , Suínos , Animais , Expressão Gênica , Genômica , Fenótipo , Suínos/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-32117815

RESUMO

Bacterial infection remains one of the leading causes of death worldwide due to the continuous rise of multiple antibiotic-resistant bacteria. Focusing solely on bacteria as the drug targets is a major limitation inherent in the conventional antibiotic therapy. Recently, host-directed therapies have become such an innovative approach to modulate the host defense system and the interplay of innate and adaptive immunity. Our previous studies showed that memantine (MEM), an α7 nAChR antagonist, could efficiently block multi-drug resistant Escherichia coli-caused bacteremia and meningitis in a mouse model. However, the underlying mechanisms that govern the antibacterial effects of MEM are still unknown. In this study, we demonstrated that MEM is able to significantly suppress E. coli infection by enhancing E. coli-induced formation and release of NETs in vitro and in vivo. MEM could promote the trapping and bactericidal activities of the polymorphonuclear neutrophils (PMNs) in a manner dependent on α7 nAChR, since knockdown of this receptor noticeably reduces the survival ability of bacteria in PMNs while MEM no longer affects the survival of bacteria in PMNs. Our results also showed that when the expression of S100A9, an antiseptic protein, is inhibited, pathogen survival rates in PMNs increase significantly. MEM reverses this effect in a concentration-dependent manner. MEM stimulates the production of MPO, S100A9, and DNA in PMNs and accelerates the release of depolymerized chromatin fibers into the extracellular space, suggesting the formation of NETs. Taken together, our data suggest that MEM effectively blocks bacterial infection through the promotion of the antibacterial function of NETs induced by E. coli.


Assuntos
Armadilhas Extracelulares , Meningite , Animais , Escherichia coli , Memantina/farmacologia , Camundongos , Neutrófilos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...