Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Front Oncol ; 14: 1382183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947886

RESUMO

Gastric cancer and gastroesophageal junction cancer represent the leading cause of tumor-related death worldwide. Although advances in immunotherapy and molecular targeted therapy have expanded treatment options, they have not significantly altered the prognosis for patients with unresectable or metastatic gastric cancer. A minority of patients, particularly those with PD-L1-positive, HER-2-positive, or MSI-high tumors, may benefit more from immune checkpoint inhibitors and/or HER-2-directed therapies in advanced stages. However, for those lacking specific targets and unique molecular features, conventional chemotherapy remains the only recommended effective and durable regimen. In this review, we summarize the roles of various signaling pathways and further investigate the available targets. Then, the current results of phase II/III clinical trials in advanced gastric cancer, along with the superiorities and limitations of the existing biomarkers, are specifically discussed. Finally, we will offer our insights in precision treatment pattern when encountering the substantial challenges.

2.
Stem Cell Res Ther ; 15(1): 190, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956621

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) demonstrate a wide range of therapeutic capabilities in the treatment of inflammatory bowel disease (IBD). The intraperitoneal injection of MSCs has exhibited superior therapeutic efficacy on IBD than intravenous injection. Nevertheless, the precise in vivo distribution of MSCs and their biological consequences following intraperitoneal injection remain inadequately understood. Additional studies are required to explore the correlation between MSCs distribution and their biological effects. METHODS: First, the distribution of human umbilical cord MSCs (hUC-MSCs) and the numbers of Treg and Th17 cells in mesenteric lymph nodes (MLNs) were analyzed after intraperitoneal injection of hUC-MSCs. Subsequently, the investigation focused on the levels of transforming growth factor beta1 (TGF-ß1), a key cytokine to the biology of both Treg and Th17 cells, in tissues of mice with colitis, particularly in MLNs. The study also delved into the impact of hUC-MSCs therapy on Treg cell counts in MLNs, as well as the consequence of TGFB1 knockdown hUC-MSCs on the differentiation of Treg cells and the treatment of IBD. RESULTS: The therapeutic effectiveness of intraperitoneally administered hUC-MSCs in the treatment of colitis was found to be significant, which was closely related to their quick migration to MLNs and secretion of TGF-ß1. The abundance of hUC-MSCs in MLNs of colitis mice is much higher than that in other organs even the inflamed sites of colon. Intraperitoneal injection of hUC-MSCs led to a significant increase in the number of Treg cells and a decrease in Th17 cells especially in MLNs. Furthermore, the concentration of TGF-ß1, the key cytokine for Treg differentiation, were also found to be significantly elevated in MLNs after hUC-MSCs treatment. Knockdown of TGFB1 in hUC-MSCs resulted in a noticeable reduction of Treg cells in MLNs and the eventually failure of hUC-MSCs therapy in colitis. CONCLUSIONS: MLNs may be a critical site for the regulatory effect of hUC-MSCs on Treg/Th17 cells and the therapeutic effect on colitis. TGF-ß1 derived from hUC-MSCs promotes local Treg differentiation in MLNs. This study will provide new ideas for the development of MSC-based therapeutic strategies in IBD patients.


Assuntos
Diferenciação Celular , Colite , Linfonodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Linfócitos T Reguladores , Células Th17 , Fator de Crescimento Transformador beta1 , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Colite/terapia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Linfonodos/metabolismo , Células Th17/metabolismo , Células Th17/imunologia , Cordão Umbilical/citologia , Mesentério/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Masculino , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia
3.
Cancer Lett ; : 217111, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972347

RESUMO

Intratumoral delivery of mRNA encoding immunostimulatory molecules can initiate a robust, global antitumor response with little side effects by enhancing local antigen presentation in the tumor and the tumor draining lymph node. Neoantigen-based mRNA nanovaccine can inhibit melanoma growth in mice by intratumoral injection. Myeloid-derived suppressor cells (MDSCs) suppress antitumor immune responses by secreting immunosuppressive agents, such as reactive oxygen species (ROS). Suppression of STAT3 activity by stattic may reduce MDSC-mediated immunosuppression in the TME and promote the antitumor immune responses. In this study, in vitro transcribed mRNA encoding tumor antigen survivin was prepared and injected intratumorally in BALB/c mice bearing subcutaneous colon cancer tumors. In vivo studies demonstrated that intratumoral survivin mRNA therapy could induce antitumor T cell response and inhibit tumor growth of colon cancer. Depletion of CD8+ T cells could significantly inhibit survivin mRNA-induced antitumor effects. RT-qPCR and ELISA analysis indicated that survivin mRNA treatment led to increased expression of receptor activator nuclear factor-κB ligand (RANKL). In vitro experiment showed that MDSCs could be induced from mouse bone marrow cells by RANKL and RANKL-induced MDSCs could produce high level of ROS. STAT3 inhibitor stattic suppressed activation of STAT3 and NF-κB signals, thereby inhibiting expansion of RANKL-induced MDSCs. Combination therapy of survivin mRNA and stattic could significantly enhance antitumor T cell response, improve long-term survival and reduce immunosuppressive tumor microenvironment compared to each monotherapy. In addition, combined therapy resulted in a significantly reduced level of tumor cell proliferation and an obviously increased level of tumor cell apoptosis in CT26 colon cancer-bearing mice, which could be conducive to inhibit the tumor growth and lead to immune responses to released tumor-associated antigens. These studies explored intratumoral mRNA therapy and mRNA-based combined therapy to treat colon cancer and provide a new idea for cancer therapy.

4.
Int J Biol Macromol ; 272(Pt 1): 132856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834118

RESUMO

Economically and efficiently removing organic pollutants from water is still a challenge in wastewater treatment. Utilizing environmentally friendly and readily available protein-based natural polymers to develop aerogels with effective removal performance and sustainable regeneration capability is a promising strategy for adsorbent design. Here, a robust and cost-effective method using inexpensive ß-lactoglobulin (BLG) as raw material was proposed to fabricate BLG-based aerogels. Firstly, photocurable BLG-based polymers were synthesized by grafting glycidyl methacrylate. Then, a cross-linking reaction, including photo-crosslinking and salting-out treatment, was applied to prepared BLG-based hydrogels. Finally, the BLG-based aerogels with high porosity and ultralight weight were obtained after freeze-drying. The outcomes revealed that the biocompatible BLG-based aerogels exhibited effective removal performance for a variety of organic pollutants under perfectly quiescent conditions, and could be regenerated and reused many times via a simple and rapid process of acid washing and centrifugation. Overall, this work not only demonstrates that BLG-based aerogels are promising adsorbents for water purification but also provides a potential way for the sustainable utilization of BLG.


Assuntos
Géis , Lactoglobulinas , Poluentes Químicos da Água , Purificação da Água , Lactoglobulinas/química , Lactoglobulinas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Purificação da Água/métodos , Géis/química , Adsorção , Porosidade , Hidrogéis/química , Água/química , Compostos de Epóxi , Metacrilatos
5.
Sci Rep ; 14(1): 14343, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906929

RESUMO

Non-small cell lung cancer (NSCLC)-originating cancer-associated fibroblasts (CAFs) expressing CD248 regulate interaction with immune cells to accelerate cancer progression. Epithelial-mesenchymal transition (EMT) is a key feature of metastatic cells. In our pervious study, we found that CD248+CAFs activated M2-polarized macrophages, enhancing the progression of NSCLC. However, it is yet unclear how CD248+CAFs inducing M2-polarized macrophages induce EMT program in NSCLC cells. Herein, we examined CD248 expression from CAFs derived from NSCLC patient tumour tissues. Furthermore, we determined the influence of CD248 knock down CAFs on macrophages polarization. Next, we explored the influences of CD248-harboring CAFs-mediated M2 macrophage polarization to promote NSCLC cells EMT in vitro. We constructed fibroblasts specific CD248 gene knock out mice to examine the significance of CD248-harboring CAFs-induced M2-polarized macrophages to promote NSCLC cells EMT in vivo. Based on our analysis, CD248 is ubiquitously expressed within NSCLC-originating CAFs. CD248+CAFs mediated macrophages polarized to M2 type macrophages. CD248+CAFs induced M2 macrophage polarization to enhance NSCLC cells EMT both in vivo and in vitro. Our findings indicate that CD248-harboring CAFs promote NSCLC cells EMT by regulating M2-polarized macrophages.


Assuntos
Antígenos CD , Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Macrófagos , Transição Epitelial-Mesenquimal/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Humanos , Animais , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Macrófagos/metabolismo , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Camundongos Knockout , Linhagem Celular Tumoral , Antígenos de Neoplasias
6.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891796

RESUMO

Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π-hole-type Se∙∙∙O/S ChBs in the binary complexes of SeO2 with a series of O-/S-containing Lewis bases by means of high-level ab initio computations. The results demonstrate that there exists an attractive interaction between the Se atom of SeO2 and the O/S atom of Lewis bases. The interaction energies computed at the MP2/aug-cc-pVTZ level range from -4.68 kcal/mol to -10.83 kcal/mol for the Se∙∙∙O chalcogen-bonded complexes and vary between -3.53 kcal/mol and -13.77 kcal/mol for the Se∙∙∙S chalcogen-bonded complexes. The Se∙∙∙O/S ChBs exhibit a relatively short binding distance in comparison to the sum of the van der Waals radii of two chalcogen atoms. The Se∙∙∙O/S ChBs in all of the studied complexes show significant strength and a closed-shell nature, with a partially covalent character in most cases. Furthermore, the strength of these Se∙∙∙O/S ChBs generally surpasses that of the C/O-H∙∙∙O hydrogen bonds within the same complex. It should be noted that additional C/O-H∙∙∙O interactions have a large effect on the geometric structures and strength of Se∙∙∙O/S ChBs. Two subunits are connected together mainly via the orbital interaction between the lone pair of O/S atoms in the Lewis bases and the BD*(OSe) anti-bonding orbital of SeO2, except for the SeO2∙∙∙HCSOH complex. The electrostatic component emerges as the largest attractive contributor for stabilizing the examined complexes, with significant contributions from induction and dispersion components as well.


Assuntos
Calcogênios , Bases de Lewis , Oxigênio , Selênio , Enxofre , Bases de Lewis/química , Calcogênios/química , Selênio/química , Enxofre/química , Oxigênio/química , Modelos Moleculares , Ligação de Hidrogênio , Óxidos de Selênio/química , Termodinâmica
7.
Infect Dis (Lond) ; : 1-12, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753988

RESUMO

BACKGROUND: There is a critical need for a rapid and sensitive pathogen detection method for septic patients. This study aimed to investigate the diagnostic efficacy of Digital droplet polymerase chain reaction (ddPCR) in identifying pathogens among suspected septic patients. METHODS: We conducted a prospective pilot diagnostic study to clinically validate the multiplex ddPCR panel in diagnosing suspected septic patients. A total of 100 sepsis episodes of 89 patients were included in the study. RESULTS: In comparison to blood culture, the ddPCR panel exhibited an overall sensitivity of 75.0% and a specificity of 69.7%, ddPCR yielded an additional detection rate of 17.0% for sepsis cases overall, with a turnaround time of 2.5 h. The sensitivity of ddPCR in the empirical antibiotic treatment and the non-empirical antibiotic treatment group were 78.6% versus 80.0% (p > 0.05). Antimicrobial resistance genes were identified in a total of 13 samples. Whenever ddPCR detected the genes beta-lactamase-Klebsiella pneumoniae carbapenemase (blaKPC) or beta-lactamase-New Delhi metallo (blaNDM), these findings corresponded to the cultivation of carbapenem-resistant gram-negative bacteria. Dynamic ddPCR monitoring revealed a consistent alignment between the quantitative ddPCR results and the trends observed in C-reactive protein and procalcitonin levels. CONCLUSIONS: Compared to blood culture, ddPCR exhibited higher sensitivity for pathogen diagnosis in suspected septic patients, and it provided pathogen and drug resistance information in a shorter time. The quantitative results of ddPCR generally aligned with the trends seen in C-reactive protein and procalcitonin levels, indicating that ddPCR can serve as a dynamic monitoring tool for pathogen load in septic patients.

8.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791191

RESUMO

Cancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system response to damaged tissue is also crucial in determining the success or failure of an implant. Due to their extracellular matrix mimetics and tunable chemical or physical performance, hydrogels are promising platforms for building immunomodulatory microenvironments for realizing cancer therapy and tissue regeneration. However, submicron or nanosized pore structures within hydrogels are not favorable for modulating immune cell function, such as cell invasion, migration, and immunophenotype. In contrast, hydrogels with a porous structure not only allow for nutrient transportation and metabolite discharge but also offer more space for realizing cell function. In this review, the design strategies and influencing factors of porous hydrogels for cancer therapy and tissue regeneration are first discussed. Second, the immunomodulatory effects and therapeutic outcomes of different porous hydrogels for cancer immunotherapy and tissue regeneration are highlighted. Beyond that, this review highlights the effects of pore size on immune function and potential signal transduction. Finally, the remaining challenges and perspectives of immunomodulatory porous hydrogels are discussed.


Assuntos
Hidrogéis , Neoplasias , Hidrogéis/química , Humanos , Porosidade , Animais , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Imunomodulação/efeitos dos fármacos , Engenharia Tecidual/métodos , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Microambiente Tumoral/imunologia
9.
Bioresour Technol ; 402: 130821, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735341

RESUMO

Probiotics have attracted considerable attention in animal husbandry due to their positive effect on animal growth and health. This study aimed to screen candidate probiotic strain promoting the growth and health of silkworm and reveal the potential mechanisms. A novel probiotic Pediococcus pentosaceus strain (ZZ61) substantially promoted body weight gain, feed efficiency, and silk yield. These effects were likely mediated by changes in the intestinal digestive enzyme activity and nutrient provisioning (e.g., B vitamins) of the host, improving nutrient digestion and assimilation. Additionally, P. pentosaceus produced antimicrobial compounds and increased the antioxidant capacity to protect the host against pathogenic infection. Furthermore, P. pentosaceus affected the gut microbiome and altered the levels of gut metabolites (e.g., glycine and glycerophospholipids), which in turn promotes host nutrition and health. This study contributes to an improved understanding of the interactions between probiotic and host and promotes probiotic utilization in sericulture.


Assuntos
Bombyx , Microbioma Gastrointestinal , Pediococcus pentosaceus , Probióticos , Animais , Bombyx/microbiologia , Probióticos/farmacologia , Ração Animal
10.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793587

RESUMO

A massive mortality event concerning farmed Chinese tongue soles occurred in Tianjin, China, and the causative agent remains unknown. Here, a novel Cynoglossus semilaevis papillomavirus (CsPaV) and parvovirus (CsPV) were simultaneously isolated and identified from diseased fish via electron microscopy, virus isolation, genome sequencing, experimental challenges, and fluorescence in situ hybridization (FISH). Electron microscopy showed large numbers of virus particles present in the tissues of diseased fish. Viruses that were isolated and propagated in flounder gill cells (FG) induced typical cytopathic effects (CPE). The cumulative mortality of fish given intraperitoneal injections reached 100% at 7 dpi. The complete genomes of CsPaV and CsPV comprised 5939 bp and 3663 bp, respectively, and the genomes shared no nucleotide sequence similarities with other viruses. Phylogenetic analysis based on the L1 and NS1 protein sequences revealed that CsPaV and CsPV were novel members of the Papillomaviridae and Parvoviridae families. The FISH results showed positive signals in the spleen tissues of infected fish, and both viruses could co-infect single cells. This study represents the first report where novel papillomavirus and parvovirus are identified in farmed marine cultured fish, and it provides a basis for further studies on the prevention and treatment of emerging viral diseases.


Assuntos
Doenças dos Peixes , Linguados , Genoma Viral , Papillomaviridae , Infecções por Parvoviridae , Parvovirus , Filogenia , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/mortalidade , China , Linguados/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirus/genética , Parvovirus/isolamento & purificação , Parvovirus/classificação , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Papillomaviridae/classificação , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/veterinária , Hibridização in Situ Fluorescente
11.
Oncogene ; 43(17): 1274-1287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443680

RESUMO

Cumulative studies have established the significance of transfer RNA-derived small RNA (tsRNA) in tumorigenesis and progression. Nevertheless, its function and mechanism in pancreatic cancer metastasis remain largely unclear. Here, we screened and identified tiRNA-Val-CAC-2 as highly expressed in pancreatic cancer metastasis samples by tsRNA sequencing. We also observed elevated levels of tiRNA-Val-CAC-2 in the serum of pancreatic cancer patients who developed metastasis, and patients with high levels of tiRNA-Val-CAC-2 exhibited a worse prognosis. Additionally, knockdown of tiRNA-Val-CAC-2 inhibited the metastasis of pancreatic cancer in vivo and in vitro, while overexpression of tiRNA-Val-CAC-2 promoted the metastasis of pancreatic cancer. Mechanically, we discovered that tiRNA-Val-CAC-2 interacts with FUBP1, leading to enhanced stability of FUBP1 protein and increased FUBP1 enrichment in the c-MYC promoter region, thereby boosting the transcription of c-MYC. Of note, rescue experiments confirmed that tiRNA-Val-CAC-2 could influence pancreatic cancer metastasis via FUBP1-mediated c-MYC transcription. These findings highlight a potential novel mechanism underlying pancreatic cancer metastasis, and suggest that both tiRNA-Val-CAC-2 and FUBP1 could serve as promising prognostic biomarkers and potential therapeutic targets for pancreatic cancer.

12.
Int J Biol Sci ; 20(5): 1744-1762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481809

RESUMO

Glycolysis exerts a key role in the metabolic reprogramming of cancer. Specific long non-coding RNAs (lncRNAs) have been identified to exhibit oncogenic glycolysis regulation. Nevertheless, the precise mechanisms by which glycolysis-related lncRNAs control hepatocellular carcinoma (HCC) are still unknown. We profiled and analyzed glycolysis-associated lncRNA signatures using HCC specimens from The Cancer Genome Atlas (TCGA) dataset. Considerable upregulation of the glycolysis-related lncRNA SLC2A1-DT was noted in HCC tissues; this upregulation was strongly linked with advanced tumor stage and poor prognosis. Cell culture and animal-related studies indicated that knockdown or overexpression of SLC2A1-DT obviously restrained or promoted glycolysis, propagation, and metastasis in HCC cells. Mechanistically, SLC2A1-DT enhanced the interaction of protein between ß-catenin and YWHAZ, suppressing the binding between ß-catenin and ß-TrCP, an E3 ubiquitin ligase. Thereby, SLC2A1-DT impeded the ß-TrCP-dependent ubiquitination and ß-catenin degradation. The upregulated ß-catenin activated the transcription of c-Myc, which then increased the transcription of glycolytic genes including SLC2A1, LDHA, and HK2. Additionally, we revealed that c-Myc transcriptionally induced the expression of methyltransferase 3 (METTL3), which increased N6-methyladenosine (m6A) modification and stability of SLC2A1-DT in a YTHDF1 dependent manner. Collectively, we show that the lncRNA SLC2A1-DT promotes glycolysis and HCC tumorigenesis by a m6A modification-mediated positive feedback mechanism with glycolytic regulator c-Myc and suggested as an innovative treatment option and indicator for HCC.


Assuntos
Adenina/análogos & derivados , Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Retroalimentação , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Glicólise/genética , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células/genética
13.
Nat Prod Res ; : 1-7, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520719

RESUMO

Persicaria capitata was a frequently used Hmong medicinal flora in China. In this study, one new phenolic compound, capitaone A (1) together with 20 known ones, were isolated from the whole herb of P. capitata. Among them, 7 components (4, 9-11, 15-16, 20-21) were discovered from P. capitata for the first time. Their chemical structures were elucidated on the basis of extensive NMR and MS spectrum. Furthermore, three compounds (15, 20, 21) displayed remarkable cytotoxic activities against two human cancer cell lines (A549 and HepG2).

14.
J Cell Mol Med ; 28(4): e18185, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38396325

RESUMO

Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 in vitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models in vivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin in vivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Interleucina-8 , Neoplasias Pulmonares , Animais , Camundongos , Antígenos CD , Antígenos de Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Interleucina-8/genética , Interleucina-8/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , NF-kappa B , Humanos
15.
Biochem Genet ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334875

RESUMO

There is a potential link between rheumatoid arthritis (RA) and idiopathic pulmonary fibrosis (IPF). The aim of this study is to investigate the molecular processes that underlie the development of these two conditions by bioinformatics methods. The gene expression samples for RA (GSE77298) and IPF (GSE24206) were retrieved from the Gene Expression Omnibus (GEO) database. After identifying the overlapping differentially expressed genes (DEGs) for RA and IPF, we conducted functional annotation, protein-protein interaction (PPI) network analysis, and hub gene identification. Finally, we used the hub genes to predict potential medications for the treatment of both disorders. We identified 74 common DEGs for further analysis. Functional analysis demonstrated that cellular components, biological processes, and molecular functions all played a role in the emergence and progression of RA and IPF. Using the cytoHubba plugin, we identified 7 important hub genes, namely COL3A1, SDC1, CCL5, CXCL13, MMP1, THY1, and BDNF. As diagnostic indicators for RA, SDC1, CCL5, CXCL13, MMP1, and THY1 showed favorable values. For IPF, COL3A1, SDC1, CCL5, CXCL13, THY1, and BDNF were favorable diagnostic markers. Furthermore, we predicted 61 Chinese and 69 Western medications using the hub genes. Our research findings demonstrate a shared pathophysiology between RA and IPF, which may provide new insights for more mechanistic research and more effective treatments. These common pathways and hub genes identified in our study offer potential opportunities for developing more targeted therapies that can address both disorders.

16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 81-86, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322517

RESUMO

Objective: To construct type Ⅰ collagen gels with different stiffness and to investigate the effects of three-dimensional (3D) culture environments of the gels on the morphology, free migration ability, and cell killing function of natural killer (NK) cells. Methods: Type Ⅰ collagen was isolated from the tails of Sprague Dawley (SD) rats and collagen gels with different levels of stiffnesses were prepared accordingly. The microstructure of the collagen gels was observed by laser confocal microscopy. The stiffness of the collagen gels was assessed by measuring the plateau modulus with a rheometer. NK-92MI cells were cultured in collagen gels with different levels of stiffness. The morphology of NK-92MI cells was observed by inverted microscope. High content imaging system was used to record the free migration process of NK-92MI cells and analyze the migration speed and distance. NK-92MI cells were cultured with type Ⅰ collagen gels with different levels of stiffness for 24 h and 48 h and, then, co-cultured with human colorectal DLD-1, a human adenocarcinoma epithelial cell line. CCK8 assay was performed to determine the proliferation rate of DLD-1 cells and analyze the cell killing ability of NK-92MI cells. Results: Low-stiffness type Ⅰ collagen gel and high-stiffness type Ⅰ collagen gel with the respective stiffness of (10.970±2.10) Pa and (114.50±3.40) Pa were successfully prepared. Compared with those cultured with the low-stiffness type Ⅰ collagen gel, the NK-92MI cells in the high-stiffness type Ⅰ collagen gel showed a more elongated shape (P<0.05), the mean area of the cells was reduced ([69.88±26.97] µm2 vs. [46.59±21.62] µm2, P<0.05), the roundness of the cells decreased (0.82±0.12 vs. 0.78±0.18, P<0.05), cell migration speed decreased ([2.50±0.91] µm/min vs. [1.70±0.72] µm/min, P<0.001) and the migration distance was shortened ([147.10±53.74] µm vs. [98.03± 40.95] µm, P<0.0001), with all the differences being statistically significant. Compared with those cultured with the low-stiffness type Ⅰ collagen gel, NK-92MI cells cultured with high-stiffness type Ⅰ collagen gel for 24 h could promote DLD-1 cell proliferation, with the proliferation rate being (46.39±12.79)% vs. (65.87±4.45)% (P<0.05) and reduce the cell killing ability. Comparison of the cells cultured for 48 h led to similar results, with the proliferation rates being (31.36±2.88)% vs. (74.57±2.16)% (P<0.05), and the differences were all statistically significant. Conclusion: The 3D culture environment of type Ⅰ collagen gels with different levels of stiffness alters the morphology, migration ability, and killing function of NK-92MI cells. This study provides the research basis for exploring and understanding the mechanisms by which the biomechanical microenvironment affects the immune response of NK cells, as well as laying the theoretical foundation for optimizing immunotherapy protocols.


Assuntos
Colágeno Tipo I , Células Matadoras Naturais , Ratos , Animais , Humanos , Colágeno Tipo I/metabolismo , Linhagem Celular Tumoral , Ratos Sprague-Dawley , Células Matadoras Naturais/metabolismo , Colágeno/química , Géis
17.
Environ Sci Technol ; 58(8): 4019-4028, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38366980

RESUMO

Humic acid (HA) ubiquitously existing in aquatic environments has been reported to significantly impact permanganate (KMnO4) decontamination processes. However, the underlying mechanism of the KMnO4/HA system remained elusive. In this study, an enhancing effect of HA on the KMnO4 oxidation of diclofenac (DCF) was observed over a wide solution pH range of 5-9. Surprisingly, the mechanism of HA-induced enhancement varied with solution pH. Quenching and chemical probing experiments revealed that manganese intermediates (Mn(III)-HA and MnO2) were responsible for the enhancement under acidic conditions but not under neutral and alkaline conditions. By combining KMnO4 decomposition, galvanic oxidation process experiments, electrochemical tests, and FTIR and XPS analysis, it was interestingly found that HA could effectively mediate the electron transfer from DCF to KMnO4 in neutral and alkaline solutions, which was reported for the first time. The formation of an organic-catalyst complex (i.e., HA-DCF) with lower reduction potential than the parent DCF was proposed to be responsible for the accelerated electron transfer from DCF to KMnO4. This electron transfer likely occurred within the complex molecule formed through the interaction between HA-DCF and KMnO4 (i.e., HA-DCF-KMnO4). These results will help us gain a more comprehensive understanding of the role of HA in the KMnO4 oxidation processes.


Assuntos
Óxidos , Poluentes Químicos da Água , Óxidos/química , Compostos de Manganês/química , Substâncias Húmicas/análise , Diclofenaco/química , Elétrons , Oxirredução , Poluentes Químicos da Água/análise
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 168-173, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38284258

RESUMO

Cancer associated fibroblasts (CAFs) are one of the main components of tumor microenvironment (TME). In TME, the interaction between tumor cells and non-tumor cells or among non tumor cells can promote the occurrence and development of tumors. CAFs can interact with a variety of immune cells and promote the occurrence and development of tumors by inhibiting the function of adaptive immune cells and reshaping the immune microenvironment in TME. The interaction between CAFs and macrophages and the induction of macrophage polarization towards M2 type play an important role in promoting tumor occurrence and development. This article reviews the research progress of CAF in promoting the polarization of M2 macrophages.


Assuntos
Fibroblastos Associados a Câncer , Fibroblastos Associados a Câncer/patologia , Macrófagos/patologia , Microambiente Tumoral
19.
Mol Cancer ; 23(1): 11, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200551

RESUMO

Dysregulation of R-loop homeostasis is closely related to various human diseases, including cancer. However, the causality of aberrant R-loops in tumor progression remains unclear. In this study, using single-cell RNA-sequencing datasets from lung adenocarcinoma (LUAD), we constructed an R-loop scoring model to characterize the R-loop state according to the identified R-loop regulators related to EGFR mutations, tissue origins, and TNM stage. We then evaluated the relationships of the R-loop score with the tumor microenvironment (TME) and treatment response. Furthermore, the potential roles of FANCI-mediated R-loops in LUAD were explored using a series of in vitro experiments. Results showed that malignant cells with low R-loop scores displayed glycolysis and epithelial-mesenchymal transition pathway activation and immune escape promotion, thereby hampering the antitumor therapeutic effects. Cell communication analysis suggested that low R-loop scores contributed to T cell exhaustion. We subsequently validated the prognostic value of R-loop scores by using bulk transcriptome datasets across 33 tumor types. The R-loop scoring model well predicted patients' therapeutic response to targeted therapy, chemotherapy, or immunotherapy in 32 independent cohorts. Remarkably, changes in R-loop distribution mediated by FANCI deficiency blocked the activity of Ras signaling pathway, suppressing tumor-cell proliferation and dissemination. In conclusion, this study reveals the underlying molecular mechanism of metabolic reprogramming and T cell exhaustion under R-loop score patterns, and the changes in R-loops mediated by R-loop regulators resulting in tumor progression. Therefore, incorporating anticancer methods based on R-loop or R-loop regulators into the treatment schemes of precision medicine may be beneficial.


Assuntos
Adenocarcinoma de Pulmão , Anemia de Fanconi , Neoplasias Pulmonares , Humanos , Estruturas R-Loop , Reprogramação Metabólica , Evasão da Resposta Imune , Adenocarcinoma de Pulmão/genética , Comunicação Celular , Análise de Célula Única , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
20.
Microbiol Spectr ; 12(1): e0355323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095467

RESUMO

IMPORTANCE: Given the high fatality rates, prompt and accurate identification of the fungal culprit is crucial, emphasizing the need for invasive mucormycosis. Unfortunately, mucormycosis lacks definitive biomarkers, depending primarily on smears, cultures, or pathology, all necessitating invasive specimen collection from the infection site. However, obtaining valid specimens early in critically ill patients poses substantial risks and challenges. Whether peripheral blood metagenomic next-generation sequencing (mNGS) can enhance early mucormycosis diagnosis, especially when direct specimen collection from the infection site is challenging, is warranted. This is a large-scale clinical study conducted to evaluate the utility and clinical impact of mNGS of peripheral blood for the diagnosis of invasive mucormycosis. We believe our study provided both novelty in translational medicine and a great value for the medical community to understand the strengths and limitations of mNGS of peripheral blood as a new diagnostic tool for the diagnosis and management of invasive mucormycosis.


Assuntos
Mucormicose , Humanos , Mucormicose/diagnóstico , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...