Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(34): e2300945, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093193

RESUMO

Identifying active sites of supported noble metal nanocatalysts remains challenging, since their size and shape undergo changes depending on the support, temperature, and gas mixture composition. Herein, the anharmonic infrared spectrum of adsorbed CO is simulated using density functional theory (DFT) to gain insight into the nature of Pd nanoparticles (NPs) supported on ceria. The authors systematically determine how the simulated infrared spectra are affected by CO coverage, NP size (0.5-1.5 nm), NP morphology (octahedral, icosahedral), and metal-support contact angle, by exploring a diversity of realistic models inspired by ab initio molecular dynamics. The simulated spectra are then used as a spectroscopic fingerprint to characterize nanoparticles in a real catalyst, by comparison with in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments. Truncated octahedral NPs with an acute Pd-ceria angle reproduce most of the measurements. In particular, the authors isolate features characteristic of CO adsorbed at the metal-support interface appearing at low frequencies, both seen in simulation and experiment. This work illustrates the strong need for realistic models to provide a robust description of the active sites, especially at the interface of supported metal nanocatalysts, which can be highly dynamic and evolve considerably during reaction.

2.
Angew Chem Int Ed Engl ; 59(34): 14423-14428, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32391644

RESUMO

Reducing greenhouse gas and pollutant emissions is one of the most stringent priorities of our society to minimize their dramatic effects on health and environment. Natural gas (NG) engines, in particular at lean conditions, emit less CO2 in comparison to combustion engines operated with liquid fuels but NG engines still require emission control devices for NOx removal. Using state-of-the-art technologies for selective catalytic reduction (SCR) of NOx with NH3 , we evaluated the interplay of the reducing agent NH3 and formaldehyde, which is always present in the exhaust of NG engines. Our results show that a significant amount of highly toxic hydrogen cyanide (HCN) is formed. All catalysts tested partially convert formaldehyde to HCOOH and CO. Additionally, they form secondary emissions of HCN due to catalytic reactions of formaldehyde and its oxidation intermediates with NH3 . With the present components of the exhaust gas aftertreatment system the HCN emissions are not efficiently converted to non-polluting gases. The development of more advanced catalyst formulations with improved oxidation activity is mandatory to solve this novel critical issue.

3.
Angew Chem Int Ed Engl ; 55(3): 1204-7, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26663541

RESUMO

The efficient synthesis of a sequence-defined decamer, its characterization, and its straightforward dimerization through self-metathesis are described. For this purpose, a monoprotected AB monomer was designed and used to synthesize a decamer bearing ten different and selectable side chains by iterative Passerini three-component reaction (P-3CR) and subsequent deprotection. The highly efficient procedure provided excellent yields and allows for the multigram-scale synthesis of such perfectly defined macromolecules. An olefin was introduced at the end of the synthesis, allowing the self-metathesis reaction of the resulting decamer to provide a sequence-defined 20-mer with a molecular weight of 7046.40 g mol(-1). The obtained oligomers were carefully characterized by NMR and IR spectroscopy, GPC and GPC coupled to ESI-MS, and mass spectrometry (FAB and orbitrap ESI-MS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...