Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 172(4): 204-12, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10525736

RESUMO

The capacity of anoxygenic phototrophic bacteria to utilize aromatic hydrocarbons was investigated in enrichment cultures with toluene. When mineral medium with toluene (provided in an inert carrier phase) was inoculated with activated sludge and incubated under infrared illumination (> 750 nm), a red-to-brownish culture developed. Agar dilution series indicated the dominance of two types of phototrophic bacteria. One type formed red colonies, had rod-shaped cells with budding division, and grew on benzoate but not on toluene. The other type formed yellow-to-brown colonies, had oval cells, and utilized toluene and benzoate. One strain of the latter type, ToP1, was studied in detail. Sequence analysis of the 16S rRNA gene and DNA-DNA hybridization indicated an affiliation of strain ToP1 with the species Blastochloris sulfoviridis, a member of the alpha-subclass of Proteobacteria. However, the type strain (DSM 729) of Blc. sulfoviridis grew neither on toluene nor on benzoate. Light-dependent consumption of toluene in the presence of carbon dioxide and formation of cell mass by strain ToP1 were demonstrated in quantitative growth experiments. Strain ToP1 is the first phototrophic bacterium shown to utilize an aromatic hydrocarbon. In the supernatant of toluene-grown cultures and in cell-free extracts incubated with toluene and fumarate, the formation of benzylsuccinate was detected. These findings indicate that the phototrophic bacterium activates toluene anaerobically by the same mechanism that has been reported for denitrifying and sulfate-reducing bacteria. The natural abundance of phototrophic bacteria with the capacity for toluene utilization was examined in freshwater habitats. Counting series revealed that up to around 1% (1.8 x 10(5) cells per gram dry mass of sample) of the photoheterotrophic population cultivable with acetate grew on toluene.

2.
Nature ; 401(6750): 266-9, 1999 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-10499582

RESUMO

Biological formation of methane is the terminal process of biomass degradation in aquatic habitats where oxygen, nitrate, ferric iron and sulphate have been depleted as electron acceptors. The pathway leading from dead biomass to methane through the metabolism of anaerobic bacteria and archaea is well understood for easily degradable biomolecules such as carbohydrates, proteins and lipids. However, little is known about the organic compounds that lead to methane in old anoxic sediments where easily degradable biomolecules are no longer available. One class of naturally formed long-lived compounds in such sediments is the saturated hydrocarbons (alkanes). Alkanes are usually considered to be inert in the absence of oxygen, nitrate or sulphate, and the analysis of alkane patterns is often used for biogeochemical characterization of sediments. However, alkanes might be consumed in anoxic sediments below the zone of sulphate reduction, but the underlying process has not been elucidated. Here we used enrichment cultures to show that the biological conversion of long-chain alkanes to the simplest hydrocarbon, methane, is possible under strictly anoxic conditions.


Assuntos
Alcanos/metabolismo , Bactérias Anaeróbias/metabolismo , Euryarchaeota/metabolismo , Metano/metabolismo , Bactérias Anaeróbias/classificação , Biodegradação Ambiental , Dióxido de Carbono/metabolismo , Euryarchaeota/classificação , Dados de Sequência Molecular
3.
Appl Environ Microbiol ; 65(3): 999-1004, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10049854

RESUMO

Various alkylbenzenes were depleted during growth of an anaerobic, sulfate-reducing enrichment culture with crude oil as the only source of organic substrates. From this culture, two new types of mesophilic, rod-shaped sulfate-reducing bacteria, strains oXyS1 and mXyS1, were isolated with o-xylene and m-xylene, respectively, as organic substrates. Sequence analyses of 16S rRNA genes revealed that the isolates affiliated with known completely oxidizing sulfate-reducing bacteria of the delta subclass of the class Proteobacteria. Strain oXyS1 showed the highest similarities to Desulfobacterium cetonicum and Desulfosarcina variabilis (similarity values, 98.4 and 98.7%, respectively). Strain mXyS1 was less closely related to known species, the closest relative being Desulfococcus multivorans (similarity value, 86.9%). Complete mineralization of o-xylene and m-xylene was demonstrated in quantitative growth experiments. Strain oXyS1 was able to utilize toluene, o-ethyltoluene, benzoate, and o-methylbenzoate in addition to o-xylene. Strain mXyS1 oxidized toluene, m-ethyltoluene, m-isoproyltoluene, benzoate, and m-methylbenzoate in addition to m-xylene. Strain oXyS1 did not utilize m-alkyltoluenes, whereas strain mXyS1 did not utilize o-alkyltoluenes. Like the enrichment culture, both isolates grew anaerobically on crude oil with concomitant reduction of sulfate to sulfide.


Assuntos
Derivados de Benzeno/metabolismo , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/isolamento & purificação , Xilenos/metabolismo , Alquilação , Anaerobiose , Composição de Bases , Biodegradação Ambiental , Meios de Cultura , DNA Bacteriano/química , DNA Bacteriano/genética , Genes de RNAr , Dados de Sequência Molecular , Oxirredução , Petróleo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Bactérias Redutoras de Enxofre/metabolismo , Microbiologia da Água
4.
J Mol Microbiol Biotechnol ; 1(1): 157-64, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10941798

RESUMO

Denitrifying strain EbN1 utilizes either ethylbenzene or toluene as the sole source of organic carbon under strictly anoxic conditions. When cells were grown on ethylbenzene, 1-phenylethanol and acetophenone were detected in the culture supernatant. However, these two compounds were not observed when cells were grown on benzoate. Growth on ethylbenzene, 1-phenylethanol, or acetophenone strictly depended on the presence of CO2, whereas growth on benzoate did not. These results suggest that strain EbN1 degrades ethylbenzene via 1-phenylethanol and acetophenone as intermediates, and that acetophenone is subsequently carboxylated. In suspensions of benzoate-grown cells, induction was required for degradation of ethylbenzene, 1-phenylethanol, and acetophenone. Induction was also required for toluene-grown cells to gain activity to degrade ethylbenzene, and, conversely, for ethylbenzene-grown cells to degrade toluene. In accordance with our findings from these studies, two-dimensional gel electrophoretic analysis of extracts of cells grown on benzoate, acetophenone, ethylbenzene, or toluene showed that a number of substrate-specific proteins were induced in strain EbN1. Growth on toluene or ethylbenzene induced a distinct set of proteins. However, some of the induced proteins in ethylbenzene or acetophenone grown cells were identical. This agrees with the finding that acetophenone is an intermediate in the degradation of ethylbenzene.


Assuntos
Derivados de Benzeno/metabolismo , Betaproteobacteria/metabolismo , Tolueno/metabolismo , Acetofenonas/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Anaerobiose , Proteínas de Bactérias/análise , Betaproteobacteria/crescimento & desenvolvimento , Betaproteobacteria/fisiologia , Biodegradação Ambiental , Dióxido de Carbono , Eletroforese em Gel Bidimensional/métodos , Hidrocarbonetos Aromáticos/metabolismo , Dados de Sequência Molecular , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...