Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Am J Clin Pathol ; 161(1): 60-70, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37658775

RESUMO

OBJECTIVES: Fluorescence in situ hybridization (FISH) for plasma cell neoplasms (PCNs) requires plasma cell (PC) identification or purification strategies to optimize results. We compared the efficacy of cytoplasmic immunoglobulin FISH (cIg-FISH) and fluorescence-activated cell sorting FISH (FACS-FISH) in a clinical laboratory setting. METHODS: The FISH analysis results of 14,855 samples from individuals with a suspected PCN subjected to cytogenetic evaluation between 2019 and 2022 with cIg-FISH (n = 6917) or FACS-FISH (n = 7938) testing were analyzed. RESULTS: Fluorescence-activated cell sorting-FISH increased the detection rate of abnormalities in comparison with cIg-FISH, with abnormal results documented in 54% vs 50% of cases, respectively (P < .001). It improved the detection of IGH::CCND1 (P < .001), IGH::MAF (P < .001), IGH::MAFB (P < .001), other IGH rearrangements (P < .001), and gains/amplifications of 1q (P < .001), whereas the detection rates of IGH::FGFR3 fusions (P = .3), loss of 17p (P = .3), and other abnormalities, including hyperdiploidy (P = .5), were similar. Insufficient PC yield for FISH analysis was decreased between cIg-FISH and FACS-FISH (22% and 3% respectively, P < .001). Flow cytometry allowed establishment of ploidy status in 91% of cases. In addition, FACS-FISH decreased analysis times, workload efforts, and operating costs. CONCLUSIONS: Fluorescence-activated cell sorting-FISH is an efficient PC purification strategy that affords significant improvement in diagnostic yield and decreases workflow requirements in comparison with cIg-FISH.


Assuntos
Mieloma Múltiplo , Neoplasias de Plasmócitos , Humanos , Plasmócitos , Hibridização in Situ Fluorescente/métodos , Mieloma Múltiplo/diagnóstico , Anticorpos , Aberrações Cromossômicas
8.
Clin Case Rep ; 10(7): e6008, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35846917

RESUMO

A 2-month-old male patient harboring a duplication of DMD exons 1-7 classified as pathogenic by an outside institution presented with mildly elevated creatine phosphokinase (CK); molecular breakpoint analysis by our laboratory reclassified the duplication as likely benign. To date, proband continues to develop normally with decreased CK, further supporting our reclassification.

9.
Genes Chromosomes Cancer ; 61(12): 710-719, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35771717

RESUMO

Acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21-ALL) represents a recurrent high-risk cytogenetic abnormality and accurate identification is critical for appropriate clinical management. Identification of iAMP21-ALL has historically relied on fluorescence in situ hybridization (FISH) using a RUNX1 probe. Current classification requires ≥ five copies of RUNX1 per cell and ≥ three additional copies of RUNX1 on a single abnormal iAMP21-chromosome. We sought to evaluate the performance of the RUNX1 probe in the identification of iAMP21-ALL. This study was a retrospective evaluation of iAMP21-ALL in the Mayo Clinic and Children's Oncology Group cohorts. Of 207 cases of iAMP21-ALL, 188 (91%) were classified as "typical" iAMP21-ALL, while 19 (9%) cases were classified as "unusual" iAMP21-ALL. The "unusual" iAMP21 cases did not meet the current definition of iAMP21 by FISH but were confirmed to have iAMP21 by chromosomal microarray. Half of the "unusual" iAMP21-ALL cases had less than five RUNX1 signals, while the remainder had ≥ five RUNX1 signals with some located apart from the abnormal iAMP21-chromosome. Nine percent of iAMP21-ALL cases fail to meet the FISH definition of iAMP21-ALL demonstrating that laboratories are at risk of misidentification of iAMP21-ALL when relying only on the RUNX1 FISH probe. Incorporation of chromosomal microarray testing circumvents these risks.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células Precursoras , Aberrações Cromossômicas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos , Hibridização in Situ Fluorescente , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudos Retrospectivos
10.
Clin Cancer Res ; 27(19): 5430-5439, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34233962

RESUMO

PURPOSE: Structural variants (SV) of the MYC gene region are common in multiple myeloma and influence disease progression. However, the prognostic significance of different MYC SVs in multiple myeloma has not been clearly established. EXPERIMENTAL DESIGN: We conducted a retrospective study of multiple myeloma comparing MYC SV subtypes identified by next-generation sequencing (NGS) and FISH to MYC expression and disease survival using 140 cases from Mayo Clinic and 658 cases from the MMRF CoMMpass study. RESULTS: MYC SVs were found in 41% of cases and were classified into nine subtypes. A correlation between the presence of a MYC SV and increased MYC expression was identified. Among the nine MYC subtypes, the non-immunoglobulin (non-Ig) insertion subtype was independently associated with improved outcomes, while the Ig insertion subtype, specifically involving the IgL gene partner, was independently associated with poorer outcomes compared with other MYC SV subtypes. Although the FISH methodology failed to detect approximately 70% of all MYC SVs, those detected by FISH were associated with elevated MYC gene expression and poor outcomes suggesting a different pathogenic role for FISH-detected MYC subtypes compared with other MYC subtypes. CONCLUSIONS: Understanding the impact of different MYC SVs on disease outcome is necessary for the reliable interpretation of MYC SVs in multiple myeloma. NGS approaches should be considered as a replacement technique for a more comprehensive evaluation of the multiple myeloma clone.


Assuntos
Mieloma Múltiplo , Genes myc , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulinas/genética , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Prognóstico , Estudos Retrospectivos
11.
PLoS One ; 16(7): e0253859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228749

RESUMO

Phelan-McDermid syndrome (PMS) is a multi-system disorder characterized by significant variability in clinical presentation. The genetic etiology is also variable with differing sizes of deletions in the chromosome 22q13 region and types of genetic abnormalities (e.g., terminal or interstitial deletions, translocations, ring chromosomes, or SHANK3 variants). Position effects have been shown to affect gene expression and function and play a role in the clinical presentation of various genetic conditions. This study employed a topologically associating domain (TAD) analysis approach to investigate position effects of chromosomal rearrangements on selected candidate genes mapped to 22q13 in 81 individuals with PMS. Data collected were correlated with clinical information from these individuals and with expression and metabolic profiles of lymphoblastoid cells from selected cases. The data confirmed TAD predictions for genes encompassed in the deletions and the clinical and molecular data indicated clear differences among individuals with different 22q13 deletion sizes. The results of the study indicate a positive correlation between deletion size and phenotype severity in PMS and provide evidence of the contribution of other genes to the clinical variability in this developmental disorder by reduced gene expression and altered metabolomics.


Assuntos
Transtornos Cromossômicos/genética , Rearranjo Gênico , Adolescente , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Estudos de Coortes , Feminino , Variação Genética , Humanos , Masculino
12.
Clin Case Rep ; 9(2): 769-774, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598243

RESUMO

This case report underlines the importance of molecular characterization of genomic duplications and other structural variants in the prenatal setting to guide clinical interpretation, genetic counseling, and perinatal medical care.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31662300

RESUMO

Trichorhinophalangeal syndrome type I (TRPSI) is a rare disorder that causes distinctive ectodermal, facial, and skeletal features affecting the hair (tricho-), nose (rhino-), and fingers and toes (phalangeal) and is inherited in an autosomal dominant pattern. TRPSI is caused by loss of function variants in TRPS1, involved in the regulation of chondrocyte and perichondrium development. Pathogenic variants in TRPS1 include missense mutations and deletions with variable breakpoints, with only a single instance of an intragenic duplication reported to date. Here we report an affected individual presenting with a classic TRPSI phenotype who is heterozygous for a de novo intragenic ∼36.3-kbp duplication affecting exons 2-4 of TRPS1 Molecular analysis revealed the duplication to be in direct tandem orientation affecting the splicing of TRPS1 The aberrant transcripts are predicted to produce a truncated TRPS1 missing the nuclear localization signal and the GATA and IKAROS-like zinc-finger domains resulting in functional TRPS1 haploinsufficiency. Our study identifies a novel intragenic tandem duplication of TRPS1 and highlights the importance of molecular characterization of intragenic duplications.


Assuntos
Dedos/anormalidades , Doenças do Cabelo/genética , Síndrome de Langer-Giedion/genética , Nariz/anormalidades , Proteínas Repressoras/genética , Idoso , Criança , Proteínas de Ligação a DNA/genética , Éxons/genética , Família , Feminino , Duplicação Gênica/genética , Doenças do Cabelo/etiologia , Humanos , Síndrome de Langer-Giedion/etiologia , Masculino , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Splicing de RNA/genética , Proteínas Repressoras/metabolismo , Deleção de Sequência/genética , Fatores de Transcrição/genética , Dedos de Zinco/genética
16.
Clin Case Rep ; 7(6): 1154-1160, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31183085

RESUMO

We report a two-generation family with four females harboring an 8.5Mb heterozygous deletion of 5q15-q21.2 who present with dysmorphic craniofacial features and speech delay. We hypothesize haploinsufficiency of CHD1 to be contributing to the clinical features observed in this family.

18.
Eur J Hum Genet ; 27(9): 1379-1388, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31053785

RESUMO

Microphthalmia with brain and digital anomalies (MCOPS6, MIM# 607932) is an autosomal dominant disorder caused by loss-of-function variants or large deletions involving BMP4, which encodes bone morphogenetic protein 4, a member of the TGF-ß protein superfamily. BMP4 has a number of roles in embryonic development including neurogenesis, lens induction, development of cartilage and bone, urogenital development, limb and digit patterning, hair follicle regeneration, as well as tooth formation. In addition to syndromic microphthalmia, BMP4 variants have been implicated in non-syndromic cleft lip with or without cleft palate and congenital healed cleft lip indicating different allelic presentations. MCOPS6 subjects may also lack some of the major phenotypic hallmarks of the disorder, including microphthalmia, indicating variable expressivity. As only a handful of individuals with MCOPS6 have been described, we review the clinical findings in previously reported cases with either deletions or loss-of-function variants in BMP4. We describe three new cases, including two subjects with novel deletions and one subject with a likely pathogenic de novo nonsense variant [c.1052C>G, p.(S351*)] in BMP4. One of the subjects had dual molecular diagnoses including a co-occurring microdeletion at 17q21.31 associated with Koolen de Vries syndrome, which has a partially overlapping disease phenotype. None of these individuals had clinically apparent microphthalmia or anopthalmia, which have been reported in a majority of previously described cases. One subject had exophthalmia and strabismus, while another had bilateral Peters anomaly and sclerocornea, thus expanding the phenotype associated with BMP4 loss-of-function variants.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteína Morfogenética Óssea 4/genética , Regulação da Expressão Gênica , Variação Genética , Fenótipo , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Linhagem , Radiografia
19.
Am J Hum Genet ; 104(4): 565-577, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951674

RESUMO

Structural variation, composed of balanced and unbalanced genomic rearrangements, is an important contributor to human genetic diversity with prominent roles in somatic and congenital disease. At the nucleotide level, structural variants (SVs) have been shown to frequently harbor additional breakpoints and copy-number imbalances, a complexity predicted to emerge wholly as a single-cell division event. Chromothripsis, chromoplexy, and chromoanasynthesis, collectively referred to as chromoanagenesis, are three major mechanisms that explain the occurrence of complex germline and somatic SVs. While chromothripsis and chromoplexy have been shown to be key signatures of cancer, chromoanagenesis has been detected in numerous cases of developmental disease and phenotypically normal individuals. Such observations advocate for a deeper study of the polymorphic and pathogenic properties of complex germline SVs, many of which go undetected by traditional clinical molecular and cytogenetic methods. This review focuses on congenital chromoanagenesis, mechanisms leading to occurrence of these complex rearrangements, and their impact on chromosome organization and genome function. We highlight future applications of routine screening of complex and balanced SVs in the clinic, as these represent a potential and often neglected genetic disease source, a true "iceberg under water."


Assuntos
Aberrações Cromossômicas , Cromotripsia , Anormalidades Congênitas/genética , Análise Citogenética , Rearranjo Gênico , Genoma Humano , Genômica , Humanos , Cariotipagem , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
20.
Hum Mol Genet ; 27(24): 4194-4203, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30169630

RESUMO

Great strides in gene discovery have been made using a multitude of methods to associate phenotypes with genetic variants, but there still remains a substantial gap between observed symptoms and identified genetic defects. Herein, we use the convergence of various genetic and genomic techniques to investigate the underpinnings of a constellation of phenotypes that include prostate cancer (PCa) and sensorineural hearing loss (SNHL) in a human subject. Through interrogation of the subject's de novo, germline, balanced chromosomal translocation, we first identify a correlation between his disorders and a poorly annotated gene known as lipid droplet associated hydrolase (LDAH). Using data repositories of both germline and somatic variants, we identify convergent genomic evidence that substantiates a correlation between loss of LDAH and PCa. This correlation is validated through both in vitro and in vivo models that show loss of LDAH results in increased risk of PCa and, to a lesser extent, SNHL. By leveraging convergent evidence in emerging genomic data, we hypothesize that loss of LDAH is involved in PCa and other phenotypes observed in support of a genotype-phenotype association in an n-of-one human subject.


Assuntos
Perda Auditiva Neurossensorial/genética , Neoplasias da Próstata/genética , Serina Proteases/genética , Translocação Genética/genética , Adulto , Idoso , Animais , Estudo de Associação Genômica Ampla , Células Germinativas/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...