Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 96(2): e20230194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747785

RESUMO

Similarly to other animal communities, the diversity of subterranean aquatic fauna is influenced by several factors and processes, such as habitat fragmentation, dispersion, environmental heterogeneity, and physical and chemical water characteristics. Here, we studied cave aquatic communities of the Alto Ribeira hydrographic basin, regarding troglobitic and non-troglobitic species, located in a single karst area to evaluate the influence of sub-basins in fauna differentiation. We investigated how abiotic variables (flow, electrical conductivity, temperature, pH, and substrate) influence the fauna composition and the contribution of beta diversity components (nestedness and turnover) in explaining communities' dissimilarities. Fauna composition differed between sub-basins, as most species did not co-occur in different caves. Caves with higher flow and substrate diversity were the richest. In addition, each cave community was influenced by a unique set of abiotic variables. Dissimilarity among caves was mainly explained by turnover, and our findings suggest the restricted species distribution could be due to ecological (e.g., limited dispersion capacity, tolerance to abiotic variables), hydrogeological (e.g., dispersion barriers, isolation of sub-basins), and historical (e.g., colonization, paleoclimatic events) factors and processes. Therefore, different elements are responsible for determining the composition of cave aquatic communities in different sub-basins, reflecting the variability within a single karst area.


Assuntos
Biodiversidade , Cavernas , Ecossistema , Brasil , Animais , Organismos Aquáticos
2.
ACS Appl Mater Interfaces ; 15(32): 38412-38422, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37540153

RESUMO

The hydrogen sorption properties of single-phase bcc (TiVNb)100-xCrx alloys (x = 0-35) are reported. All alloys absorb hydrogen quickly at 25 °C, forming fcc hydrides with storage capacity depending on the Cr content. A thermodynamic destabilization of the fcc hydride is observed with increasing Cr concentration, which agrees well with previous compositional machine learning models for metal hydride thermodynamics. The steric effect or repulsive interactions between Cr-H might be responsible for this behavior. The cycling performances of the TiVNbCr alloy show an initial decrease in capacity, which cannot be explained by a structural change. Pair distribution function analysis of the total X-ray scattering on the first and last cycled hydrides demonstrated an average random fcc structure without lattice distortion at short-range order. If the as-cast alloy contains a very low density of defects, the first hydrogen absorption introduces dislocations and vacancies that cumulate into small vacancy clusters, as revealed by positron annihilation spectroscopy. Finally, the main reason for the capacity drop seems to be due to dislocations formed during cycling, while the presence of vacancy clusters might be related to the lattice relaxation. Having identified the major contribution to the capacity loss, compositional modifications to the TiVNbCr system can now be explored that minimize defect formation and maximize material cycling performance.

3.
Sci Total Environ ; 869: 161771, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702269

RESUMO

Wastewater treatment plants can become a source of valuable resources, such as clean water, energy, fuels and nutrients and thus contribute to the sustainable development goals and a transition to a circular economy. This can be achieved by adopting advanced wastewater and sludge treatment techniques. However, these have to be evaluated on their sustainability to avoid any unintentional consequences. Therefore, this paper presents a life cycle sustainability assessment of advanced wastewater and sludge treatment techniques by integrating the environmental, economic and social aspects. The options considered for advanced wastewater treatment are: i) granular activated carbon; ii) nanofiltration; iii) solar photo-Fenton; and iv) ozonation. The technologies for advanced sludge treatment are: i) agricultural application of anaerobically digested sludge; ii) agricultural application of composted sludge; iii) incineration; iv) pyrolysis; and v) wet air oxidation. The results for the advanced wastewater treatment techniques demonstrate that nanofiltration is the most sustainable option if all the sustainability aspects are considered equally important. If, however, a higher preference is given to the economic aspect, ozonation and granular activated carbon would both be comparable to nanofiltration; if the social aspect is considered more important, only activated carbon would be comparable to nanofiltration. Among the sludge treatment methods, agricultural application of sludge is the most sustainable technique for mean-to-high resource recovery. If the recovery rate is lower, this option is comparable with incineration and pyrolysis with high recovery of their respective products. This work helps to identify the most sustainable techniques that could be combined with conventional wastewater treatments for promoting wastewater reuse and resource recovery across a wide range of operating parameters and products outputs. The findings also support the notion that more sustainable wastewater treatment could be achieved by a circular use of water, energy and nutrients contained in urban wastewaters.

4.
Biomater Adv ; 137: 212805, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929232

RESUMO

This study sought to prepare powder hemostats based on iota-carrageenan (ιC), xyloglucan (XYL), l-serine (SER), and tranexamic acid (TA). The powder form was chosen because it enables the hemostat to be used in wounds of any shape and depth. The powder hemostats showed irregular shapes and specific surface areas ranging from 34 to 46 m2/g. Increasing TA amount decreases the specific surface area, bulk density, water and blood absorption, and the antibacterial activities of the powder hemostats, but not the water retention ability. Conversely, in vitro biodegradation was positively impacted by increasing the TA content in the powder hemostats. In both the in vitro and in vivo tests, powder hemostats showed reduced bleeding time, significant adhesion of red blood cells, great hemocompatibility, moderate antioxidant activity, and high biocompatibility. These findings shed new light on designing powder hemostats with intrinsic antibacterial and antioxidant activity and excellent hemostatic performance.


Assuntos
Hemostáticos , Ácido Tranexâmico , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Carragenina/farmacologia , Glucanos , Hemostáticos/farmacologia , Pós , Serina , Ácido Tranexâmico/farmacologia , Água , Xilanos
5.
Acta Trop ; 230: 106395, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35278367

RESUMO

Piperine is an alkaloid extracted from the seed of Piper spp., which has demonstrated a larvicidal effect against Ae. aegypti. The incorporation of piperine into nanostructured systems can increase the effectiveness of this natural product in the control of Ae. aegypti larvae. In this study, we evaluated the effectiveness of piperine loaded or not into two nanostructured systems (named NS-A and NS-B) prepared by the nanoprecipitation method. The Ae. aegypti larvae were exposed to different concentrations of piperine loaded or not (2 to 16 ppm) and the mortality was investigated after 24, 48, and 72 hours. The nanostructures prepared were spherical in shape with narrow size distribution and great encapsulation efficiency. The lethal concentration 50 (LC50) for non-loaded piperine were 13.015 ppm (24 hours), 8.098 ppm (48 hours), and 7.248 ppm (72 hours). The LC50 values found for NS-A were 35.378 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours), whereas the values found for NS-B were 21.267 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours). Collectively, these findings suggested that non-loaded piperine caused higher larval mortality in the first hours of exposure while the nanostructured systems promoted the slow release of piperine and thereby increased the larvicidal activity over time. Therefore, loading piperine into nanostructured systems might be an effective tool to improve the larval control of vector Ae. aegypti.


Assuntos
Aedes , Alcaloides , Inseticidas , Nanoestruturas , Alcaloides/farmacologia , Animais , Benzodioxóis , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Piperidinas , Extratos Vegetais/química , Polímeros , Alcamidas Poli-Insaturadas
6.
Int J Biol Macromol ; 194: 32-41, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863831

RESUMO

Banana (Musa acuminata) pseudostem cellulose was extracted and acetylated (CA) to prepare membranes with potential use as bio-packages. The CA membrane was embedded by Butia seed (CA-BS) or Butia pulp (CA-BP) extracts obtained from Butia catarinenses (Butia). The produced CA, CA-BS, and CA-BP membranes were evaluated for their physical-chemical, mechanical, thermal, and antibacterial properties. The process for obtaining the cellulose yielded a material with about 92.17% cellulose (DS = 2.85). The purity, cellulose degree acetylation, and the incorporation of Butia extracts into the membranes were confirmed by FTIR. The CA-BS and CA-BP membranes showed a smaller contact angle and higher swelling ratio than the CA membrane. Furthermore, Butia seed or pulp extracts reduced the elastic modulus and deformation at break compared to the CA membrane. The DSC analysis suggested the compatibility between sections and the CA matrix, whereas the TGA analysis confirmed the thermal stability of the membranes. Moreover, less than 1% of the Butia seed and pulp extracts were put into a food simulant media from the membrane. Finally, the CA-BS and CA-BP membranes could inhibit the growth of Staphylococcus aureus and Escherichia coli on their surface, confirming the potential use of these membranes as bio-packaging for food preservation.


Assuntos
Celulose/análogos & derivados , Musa/química , Extratos Vegetais/química , Caules de Planta/química , Antibacterianos/química , Antibacterianos/farmacologia , Celulose/química , Fenômenos Químicos , Fenômenos Mecânicos , Membranas Artificiais , Embalagem de Produtos , Análise Espectral
7.
Mater Sci Eng C Mater Biol Appl ; 120: 111392, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545808

RESUMO

In this study, we performed two experiments. In the first experiment, the objective was to link gold nanoparticles (GNPs) with sodium diclofenac and/or soy lecithin and to determine their concentration in tissues and their toxicity using hepatic and renal analyzes in mice to evaluate their safety as therapeutic agents in the subsequent treatment of obesity. In the second experiment, we evaluated the effect of GNPs on inflammatory and biochemical parameters in obese mice. In the first experiment, we synthesized and characterized 18 nm GNPs that were administered intraperitoneally in isolation or in association with sodium diclofenac and/or soy lecithin in mice once daily for 1 or 14 days. Twenty-four hours after the single or final administration, the animals were euthanized, following which the tissues were removed for evaluating the concentration of GNPs, and serum samples were collected for hepatic and renal analysis. Hepatic damage was evaluated based on the levels of alanine aminotransferase (ALT), whereas renal damage was evaluated based on creatinine levels. A higher concentration of GNPs was detected in the tissues upon administration for 14 days, and there were no signs of hepatic or renal damage. In the second experiment, the mice were used as animal models of obesity and were fed a high-fat diet (obese group) and control diet (control group). After eight weeks of high-fat diet administration, the mice were treated with saline or with GNPs (average size of 18 nm) at a concentration of 70 mg/L (70 mg/kg) once a day, for 14 days, for 10 weeks. Body weight and food intake were measured frequently. After the experiment ended, the animals were euthanized, serum samples were collected for glucose and lipid profile analysis, the mesenteric fat content was weighed, and the brains were removed for inflammatory and biochemical analysis. In obese mice, although GNP administration did not reduce body and mesenteric fat weight, it reduced food intake. The glucose levels were reversed upon administration of GNPs, whereas the lipid profile was not altered in any of the groups. GNPs exerted a beneficial effect on inflammation and oxidative stress parameters, without reverting mitochondrial dysfunction. Our results indicate that the intraperitoneal administration of GNPs for 14 days results in a significant GNP concentration in adipose tissues, which could be an interesting finding for the treatment of inflammation associated with obesity. Based on the efficacy of GNPs in reducing dietary intake, inflammation, and oxidative stress, they can be considered potential alternative agents for the treatment of obesity.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Encéfalo , Ouro/metabolismo , Fígado/metabolismo , Nanopartículas Metálicas/toxicidade , Camundongos , Obesidade/tratamento farmacológico , Estresse Oxidativo
8.
Mater Sci Eng C Mater Biol Appl ; 109: 110630, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228905

RESUMO

Polymer-based wafers containing gold nanoparticles (AuNP) were prepared using κ-carrageenan (κC), locust bean gum (LBG) and polyvinyl alcohol (PVA) at ratios of 42/22/13% w/w and 35/15/17% w/w. The synthesized AuNPs were evaluated for their particle size and morphology. The produced wafers containing AuNPs were investigated for their physicochemical, morphological, mechanical, and swelling properties. In addition, bacterial barrier activity and in vitro cytotoxicity were also evaluated in this study. The AuNPs obtained were spherical in shape (~ 10-15 nm in diameter) and exhibited a single bell-shaped UV-vis absorption band centered ~ 540 nm. FT-IR spectra of the wafers containing AuNPs exhibited a shift of ν(O=S=O) absorption band toward a lower wavenumber and a shift of ν(OH) absorption band toward a higher wavenumber due to the coordination of OH groups to AuNPs and their interaction with O=S=O groups of κC, respectively. SEM images confirmed the porous structure of the produced wafers, being the surface area, mechanical properties, and swelling behavior directly affected by changing both the initial amount of [Au+3] and the composition of the wafers. Lastly, the produced wafers showed non-toxicity to NIH-3T3 fibroblast cells, and they also serve as a bacterial barrier. These findings endorsed the claim that the produced wafers containing AuNPs could be a promising material for wound dressing applications.


Assuntos
Bandagens , Carragenina , Galactanos , Ouro , Mananas , Teste de Materiais , Nanopartículas Metálicas/química , Gomas Vegetais , Álcool de Polivinil , Animais , Carragenina/química , Carragenina/farmacologia , Galactanos/química , Galactanos/farmacologia , Ouro/química , Ouro/farmacologia , Mananas/química , Mananas/farmacologia , Camundongos , Células NIH 3T3 , Gomas Vegetais/química , Gomas Vegetais/farmacologia , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia
9.
J Environ Manage ; 260: 109643, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090790

RESUMO

Sewage sludge handling is becoming a concern in Europe due to its increasing amount and the presence of contaminants, such as heavy metals and pharmaceutical and personal care products (PPCPs). Currently, over 70% of sludge in Europe is treated thermally by incineration or used as fertilizer in agriculture. New thermochemical methods are under development and are expected to be implemented in the near future. This paper considers the life cycle environmental impacts of the following five alternatives for sludge handling, taking into account the presence of heavy metals and PPCPs: i) agricultural application of anaerobically digested sludge; ii) agricultural application of composted sludge; iii) incineration; iv) pyrolysis; and v) wet air oxidation. The results suggest that anaerobic digestion with recovery of nutrients and electricity has the lowest environmental impacts in 11 out of 18 categories considered. For the mean to maximum resource recovery, composting is the worst alternative, followed by pyrolysis with lower recovery rates. Agricultural application of anaerobically digested sludge has the highest freshwater ecotoxicity due to heavy metals, unless their concentration is in the lowest range, as found in some European sewage sludge applied on land. Therefore, stricter control of heavy metals in the sludge is needed for this option to limit freshwater ecotoxicity to the levels comparable with the thermal processes. The results also indicate that PPCPs have a negligible contribution to freshwater ecotoxicity when compared to heavy metals in the anaerobically digested sludge. Since thermal processes are currently drawing attention due to their potential benefits, the findings of this work suggest that their adoption is environmentally beneficial only if high resource recovery rates can be achieved.


Assuntos
Cosméticos , Metais Pesados , Meio Ambiente , Europa (Continente) , Esgotos
10.
Water Res ; 153: 63-79, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690219

RESUMO

Within developing countries, wastewater treatment (WWT) has improved in recent years but remains a high priority sustainability challenge. Accordingly, life cycle assessment (LCA) studies have recently started to analyse the environmental impacts of WWT technologies on the specific context of less developed countries, mainly in China and India. This work presents a comprehensive review of this knowledge with the aim of critically analysing the main conclusions, gaps and challenges for future WWT-related LCAs in developing countries. The most commonly assessed technologies in the 43 reviewed articles are different variations of activated sludge and extensive treatments applied in decentralized systems; however, studies focused on advanced technologies or new sources of pollution (e.g. micropollutants) are still lacking. Goal and system boundaries are normally clearly defined, but significant stages for some technologies such as the construction and sludge management are frequently not included and functional units should be defined accordingly to specific conditions in developing countries. At the inventory level, a more concise description of sources and technical parameters would greatly improve the quality of the LCAs along with accountability of direct greenhouse gas emissions. Eutrophication and global warming are the two most commonly assessed impacts; however, the calculation of terrestrial ecotoxicity when the sludge is used for agricultural purposes, of water use and of the land use change impacts associated to extensive technologies should be encouraged. The estimation of more site-specific databases, characterization factors (especially for eutrophication) or normalization and weighting values combined with more affordable access to background databases and LCA software, would deeply increase the accuracy of WWT-related LCAs in developing countries. An increased usage of the uncertainty analysis should be encouraged to assess the influence of these gaps in the final interpretation of the results. The review finishes with a summary of the main challenges and research gaps identified and with specific guidelines for future researchers to avoid the most common shortcomings found in the reviewed studies.


Assuntos
Países em Desenvolvimento , Águas Residuárias , China , Índia , Esgotos
11.
Sci Total Environ ; 650(Pt 2): 2210-2220, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30292114

RESUMO

Scarcity of water and concerns about the ecotoxicity of micro-contaminants are driving an interest in the use of advanced tertiary processes in wastewater treatment plants. However, the life cycle environmental implications of these treatments remain uncertain. To address this knowledge gap, this study evaluates through life cycle assessment the following four advanced process options for removal of micro-contaminants from real effluents: i) solar photo-Fenton (SPF) operating at acidic pH; ii) acidic SPF coupled with nanofiltration (NF); iii) SPF operating at neutral pH; and iv) neutral SPF coupled with NF. The results show that acidic SPF coupled with NF is the best option for all 15 impacts considered. For example, its climate change potential is almost three times lower than that of the neutral SPF process (311 vs 928 kg CO2 eq./1000 m3 of treated effluent). The latter is the worst option for 12 impact categories. For the remaining three impacts (acidification, depletion of metals and particulate matter formation), acidic SPF without NF is least sustainable; it is also the second worst option for seven other impacts. Neutral SPF with NF is the second worst technology for climate change, ozone and fossil fuel depletion as well as marine eutrophication. In summary, both types of SPF perform better environmentally with than without NF and the acidic SPF treatment is more sustainable than the neutral version. Thus, the results of this work suggest that ongoing efforts on developing neutral SPF should instead be focused on further improvements of its acidic equivalent coupled with NF. These results can also be used to inform future development of policy related to the removal of micro-contaminants from wastewater.

12.
Int J Biol Macromol ; 124: 838-845, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496861

RESUMO

In this study, polysaccharide-based hydrogel wound dressings containing in situ synthesized gold nanoparticles (AuNPs) were prepared by using a simple, fast and green protocol. The prepared hydrogels were characterized with UV-vis and infrared spectroscopy (FT-IR), and dynamic light scattering (DLS). The rheological and swelling properties and the feasibility to scale-up the wound dressing production from the lamination of the prepared hydrogel on non-woven fabric were also investigated. UV-vis spectra confirmed the AuNPs synthesis and the DLS results exhibited an increase in the size of AuNPs with increasing the initial Au3+ concentration. The rheological analysis showed that the augmentation of the initial Au3+ concentration reduces the gel viscosity and gelling temperature. Besides, the FT-IR spectra revealed that the AuNPs hinder the intermolecular interactions between kappa-carrageenan (κCG) and locust bean gum (LBG). The feasibility of scale-up the wound dressing production from the prepared hydrogel was confirmed through the lamination tests.


Assuntos
Bandagens , Carragenina/química , Galactanos/química , Ouro/química , Hidrogéis/química , Mananas/química , Nanopartículas Metálicas/química , Gomas Vegetais/química , Humanos , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Reologia , Temperatura , Viscosidade , Molhabilidade
13.
Carbohydr Polym ; 206: 362-370, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553333

RESUMO

A smart wound dressing based on carrageenan (κC), locust bean gum (LBG), and cranberry extract (CB) for monitoring bacterial wound infections was developed and characterized using UV-vis spectroscopy, FT-IR, and SEM. The mechanical, swelling, cytotoxic and pH sensor properties were also investigated. UV-vis spectra demonstrated that the obtained κC:LBG:CB hydrogel film exhibited a visible change of colors as it was immersed in PBS solution pH 5.0, 7.3 and 9.0. The spectra of FT-IR suggested that chemical interactions had occurred between κC and CB extract. The obtained κC:LBG:CB hydrogel film exhibited adequate mechanical properties and a swelling behavior dependent on pH. Cytotoxicity tests indicated that κC:LBG:CB hydrogel film had dose-dependent cytotoxicity against NIH 3T3 fibroblast cells. The in vitro studies using Staphylococcus aureus and Pseudomonas aeruginosa demonstrated that the color changes of the κC:LBG:CB hydrogel film could be observed by naked eyes, confirming the potential use of the obtained hydrogel film as a visual system for monitoring bacterial wound infections.


Assuntos
Infecções Bacterianas/diagnóstico , Bandagens , Hidrogéis/química , Indicadores e Reagentes/farmacologia , Extratos Vegetais/farmacologia , Infecção dos Ferimentos/diagnóstico , Animais , Antocianinas/química , Antocianinas/farmacologia , Antocianinas/toxicidade , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Carragenina/química , Carragenina/toxicidade , Cor , Módulo de Elasticidade , Galactanos/química , Galactanos/toxicidade , Hidrogéis/toxicidade , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/química , Indicadores e Reagentes/toxicidade , Mananas/química , Mananas/toxicidade , Camundongos , Células NIH 3T3 , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Gomas Vegetais/química , Gomas Vegetais/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Resistência à Tração , Vaccinium macrocarpon/química
14.
Sci Total Environ ; 622-623: 1417-1430, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890607

RESUMO

Despite an increasing number of studies on pharmaceuticals and personal care products (PPCPs), data on their concentrations in the environment are still scant. This is due to many factors, including great variability in usage and physicochemical properties of these compounds, which contribute to their widespread presence and complex behaviour, particularly in the aquatic environment. The main pathway for their discharge into the waterways is through wastewater treatment plants (WWTPs), which are inefficient in removing many of PPCP compounds. Therefore, aiming to contribute to a better understanding of the role that WWTPs play in the presence of PPCPs in the environment, this paper proposes a new method for estimating the expected concentrations of these compounds in WWTP influents, effluents and sludge, as well as their expected discharge and related concentrations in freshwaters. The proposed method can assist with future eco-toxicological and environmental risk assessments as well as the development of policies and regulation related to PPCP compounds.


Assuntos
Cosméticos/análise , Monitoramento Ambiental/métodos , Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Água Doce , Águas Residuárias/química
15.
J Environ Manage ; 215: 258-272, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29573676

RESUMO

Pharmaceutical and personal care products (PPCPs) are of increasing interest because of their ecotoxicological properties and environmental impacts. Wastewater treatment plants (WWTPs) are the main pathway for their release into freshwaters due to the inefficiency of conventional WWTPs in removing many of these contaminants from effluents. Therefore, different advanced effluent treatment techniques have been proposed for their treatment. However, it is not known at present how effective these treatment methods are and whether on a life cycle basis they cause other environmental impacts which may outweigh the benefits of the treatment. In an effort to provide an insight into this question, this paper considers life cycle environmental impacts of the following advanced treatment techniques aimed at reducing freshwater ecotoxicity potential of PPCPs: granular activated carbon (GAC), nanofiltration (NF), solar photo-Fenton (SPF) and ozonation. The results suggest that on average NF has the lowest impacts for 13 out of 18 categories considered. GAC is the best alternative for five impacts, including metals and water depletion, but it has the highest marine eutrophication. SPF and ozonation are the least sustainable for eight impacts, including ecotoxicity and climate change. GAC and NF are also more efficient in treating heavy metals while avoiding generation of harmful by-products during the treatment, thus being more suitable for potable reuse of wastewater. However, releasing the effluent without advanced treatment to agricultural land achieves a much higher reduction of freshwater ecotoxicity than treating it by any of the advanced treatments and releasing to the environment. Therefore, the use of advanced effluent treatment for agricultural purposes is not recommended.


Assuntos
Preparações Farmacêuticas/isolamento & purificação , Poluentes Químicos da Água , Purificação da Água , Ecotoxicologia , Meio Ambiente , Eliminação de Resíduos Líquidos , Águas Residuárias
16.
Int J Biol Macromol ; 113: 51-58, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29471089

RESUMO

This manuscript was focused on introducing a facile, green and scalable method to produce kappa-carrageenan (κC) hydrogel membranes containing in situ synthesized silver nanoparticles (AgNPs). In a typical protocol, κC hydrogels were obtained by heating (sol phase), followed by cooling (gel phase) the polysaccharide solution, which enabled the simultaneous synthesis of AgNPs during the heating time. The as synthesized AgNPs were characterized spectrophotometrically, and by dynamic light scattering and transmission electron microscopy. The swelling properties at different pH and the antimicrobial activity of κC-AgNP hydrogel were investigated. AgNPs were mostly spherical in shape, crystalline in nature and measuring ca. 27nm in diameter. The in situ synthesis of AgNPs changed the swelling properties of κC hydrogel and also reduces its viscosity and gelling temperature. The AgNPs were continuously released from κC hydrogel for up to 48h in a concentration sufficient to prevent the bacterial growth as confirmed by antimicrobial tests. The simplicity involved in the AgNPs synthesis combined to the good spreadability of κC hydrogel makes this method suitable for scale-up to manufacturing quantities of wound dressing.


Assuntos
Bandagens , Carragenina/química , Hidrogéis/química , Nanopartículas Metálicas/química , Prata/química , Cicatrização , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens/microbiologia , Química Verde , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Tamanho da Partícula
17.
An Acad Bras Cienc ; 89(3): 1615-1628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28876384

RESUMO

The food base in the subterranean environment consists mainly of allochthonous materials. In this environment the resources are distributed generally in a heterogeneous dispersed way and the distribution of resources and their availability determine where the terrestrial invertebrates will reside, which is important for understanding ecological relationships and to establish conservation strategies. Thus, we tested how the complexity of substrates influences the richness and composition of the subterranean terrestrial invertebrates in the Presidente Olegário karst area, southeastern Brazil. We carried out collections in six caves during both dry and wet seasons, using combined collection methods. We observed different distributions in relation to the substrate, because the environmental heterogeneity increases the amount of available niches for the fauna. Some taxa showed a preference for specific substrates, probably related to the availability of food resources and humidity and to body size restriction, emphasizing the niche differentiation between species. Anthropogenic impacts can cause irreversible alterations in the subterranean fauna because the subterranean environment is dependent on the surface for input of trophic resources. On-going impacts in the Presidente Olegario karst area, like agriculture, pastures, gas extraction, and hydroelectric projects, are therefore a serious threat to subterranean biodiversity and this region should be prioritized for conservation.


Assuntos
Biodiversidade , Cavernas , Invertebrados/classificação , Distribuição Animal , Animais , Brasil , Densidade Demográfica , Estações do Ano
18.
An. acad. bras. ciênc ; 89(3): 1615-1628, July-Sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886750

RESUMO

ABSTRACT The food base in the subterranean environment consists mainly of allochthonous materials. In this environment the resources are distributed generally in a heterogeneous dispersed way and the distribution of resources and their availability determine where the terrestrial invertebrates will reside, which is important for understanding ecological relationships and to establish conservation strategies. Thus, we tested how the complexity of substrates influences the richness and composition of the subterranean terrestrial invertebrates in the Presidente Olegário karst area, southeastern Brazil. We carried out collections in six caves during both dry and wet seasons, using combined collection methods. We observed different distributions in relation to the substrate, because the environmental heterogeneity increases the amount of available niches for the fauna. Some taxa showed a preference for specific substrates, probably related to the availability of food resources and humidity and to body size restriction, emphasizing the niche differentiation between species. Anthropogenic impacts can cause irreversible alterations in the subterranean fauna because the subterranean environment is dependent on the surface for input of trophic resources. On-going impacts in the Presidente Olegario karst area, like agriculture, pastures, gas extraction, and hydroelectric projects, are therefore a serious threat to subterranean biodiversity and this region should be prioritized for conservation.


Assuntos
Animais , Biodiversidade , Cavernas , Invertebrados/classificação , Estações do Ano , Brasil , Densidade Demográfica , Distribuição Animal
19.
Mater Sci Eng C Mater Biol Appl ; 76: 365-373, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482539

RESUMO

This paper discusses the feasibility of using membranes based on cellulose acetate butyrate/poly(caprolactone)triol loaded with doxycycline for guided bone regeneration. Those membranes were obtained by solvent casting varying the cellulose acetate butyrate: poly(caprolactone)triol:doxycycline (CAB:PCL-T:DOX) mass ratios and characterized by scanning electron microscopy, differential scanning calorimetry, dynamical mechanical analysis, swelling and weight loss, drug release, in vitro antimicrobial activity and in vivo inflammatory response. Neat CAB and CAB:PCL-T:DOX membranes exhibited inner porous structure, which has a pore-size reduced with increasing of the PCL-T ratio. DSC results demonstrated that the molecular dispersion of the DOX into the CAB:PCL-T membrane was conditioned by PCL-T amount. Elastic modulus reduced noticeably with increased of the PCL-T ratio in the membrane from 2 to 3, while the strain at failure showed an increase of ca. 10-fold on the same condition. The DOX release mechanism from the membranes was found to be Fickian or quasi-Fickian diffusion. Membranes assessed immediately after the preparation, and even as the membranes immersed in synthetic saliva during 7 days, demonstrated significant inhibition in the growth of Staphylococcus aureus and Escherichia coli. Subcutaneous implant test on rat in vivo showed that the CAB:PCL-T:DOX membrane (7:3:1) did not trigger chronic inflammatory responses. These results suggest the feasibility in applying the CAB:PCL-T:DOX membrane as a barrier for guided bone regeneration.


Assuntos
Regeneração Óssea , Animais , Butiratos , Caproatos , Celulose/análogos & derivados , Doxiciclina , Lactonas , Poliésteres , Ratos , Staphylococcus aureus
20.
Rev Soc Bras Med Trop ; 49(6): 687-692, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28001214

RESUMO

INTRODUCTION:: The significant increase in dengue, Zika, and chikungunya and the resistance of the Aedes aegypti mosquito to major insecticides emphasize the importance of studying alternatives to control this vector. The aim of this study was to develop a controlled-release device containing Piper nigrum extract and to study its larvicidal activity against Aedes aegypti. METHODS:: Piper nigrum extract was produced by maceration, standardized in piperine, and incorporated into cotton threads, which were inserted into hydrogel cylinders manufactured by the extrusion of carrageenan and carob. The piperine content of the extract and thread reservoirs was quantified by chromatography. The release profile from the device was assessed in aqueous medium and the larvicidal and residual activities of the standardized extract as well as of the controlled-release device were examined in Aedes aegypti larvae. RESULTS: The standardized extract contained 580mg/g of piperine and an LC50 value of 5.35ppm (24h) and the 3 cm thread reservoirs contained 13.83 ± 1.81mg of piperine. The device showed zero-order release of piperine for 16 days. The P. nigrum extract (25ppm) showed maximum residual larvicidal activity for 10 days, decreasing progressively thereafter. The device had a residual larvicidal activity for up to 37 days. CONCLUSIONS:: The device provided controlled release of Piper nigrum extract with residual activity for 37 days. The device is easy to manufacture and may represent an effective alternative for the control of Aedes aegypti larvae in small water containers.


Assuntos
Aedes/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Inseticidas/administração & dosagem , Piper nigrum/química , Extratos Vegetais/administração & dosagem , Animais , Preparações de Ação Retardada , Dengue/transmissão , Sistemas de Liberação de Medicamentos , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Dose Letal Mediana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA