Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Shock ; 59(2): 311-317, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377404

RESUMO

ABSTRACT: This report deals with the advances made in the areas of complement and its role in sepsis, both in mice and in humans. The study relates to work over the past 25 years (late 1990s to October 2022). During this period, there has been very rapid progress in understanding the activation pathways of complement and the activation products of complement, especially the anaphylatoxin C5a and its receptors, C5aR1 and C5aR2. Much has also been learned about these pathways of activation that trigger activation of the innate immune system and the array of strong proinflammatory cytokines that can cause cell and organ dysfunction, as well as complement products that cause immunosuppression. The work in septic humans and mice, along with patients who develop lung dysfunction caused by COVID-19, has taught us that there are many strategies for treatment of humans who are septic or develop COVID-19-related lung dysfunction. To date, treatments in humans with these disorders suggest that we are in the midst of a new and exciting area related to the complement system.


Assuntos
COVID-19 , Sepse , Humanos , Camundongos , Animais , Citocinas , Proteínas do Sistema Complemento , Complemento C5a/metabolismo , Receptor da Anafilatoxina C5a
2.
J Immunol ; 205(1): 251-260, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32444389

RESUMO

Over the first days of polymicrobial sepsis, there is robust activation of the innate immune system, causing the appearance of proinflammatory cytokines and chemokines, along with the appearance of extracellular histones, which are highly proinflammatory and prothrombotic. In the current study, we studied different innate immune responses in mice with knockout (KO) of complement protein 6 (C6). Polymorphonuclear neutrophils (PMNs) from these KO mice had defective innate immune responses, including defective expression of surface adhesion molecules, generation of superoxide anion, and appearance of reactive oxygen species and histone release after activation of PMNs, along with defective phagocytosis. In addition, in C6-/- mice, the NLRP3 inflammasome was defective both in PMNs and in macrophages. When these KO mice were subjected to polymicrobial sepsis, their survival was improved, associated with reduced levels in the plasma of proinflammatory cytokines and chemokines and lower levels of histones in plasma. In addition, sepsis-induced cardiac dysfunction was attenuated in these KO mice. In a model of acute lung injury induced by LPS, C6-/- mice showed reduced PMN buildup and less lung epithelial/endothelial cell dysfunction (edema and hemorrhage). These data indicate that C6-/- mice have reduced innate immune responses that result in less organ injury and improved survival after polymicrobial sepsis.


Assuntos
Lesão Pulmonar Aguda/imunologia , Cardiomiopatias/imunologia , Coinfecção/imunologia , Complemento C6/metabolismo , Imunidade Inata , Sepse/imunologia , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/patologia , Animais , Cardiomiopatias/diagnóstico , Cardiomiopatias/patologia , Coinfecção/complicações , Coinfecção/diagnóstico , Coinfecção/patologia , Complemento C6/genética , Modelos Animais de Doenças , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Sepse/complicações , Sepse/diagnóstico , Sepse/genética , Índice de Gravidade de Doença
3.
Shock ; 54(5): 595-605, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32187106

RESUMO

There is abundant evidence that infectious sepsis both in humans and mice with polymicrobial sepsis results in robust activation of complement. Major complement activation products involved in sepsis include C5a anaphylatoxin and its receptors (C5aR1 and C5aR2) and, perhaps, the terminal complement activation product, C5b-9. These products (and others) also cause dysfunction of the innate immune system, with exaggerated early proinflammatory responses, followed by decline of the innate immune system, leading to immunosuppression and multiorgan dysfunction. Generation of C5a during sepsis also leads to activation of neutrophils and macrophages and ultimate appearance of extracellular histones, which have powerful proinflammatory and prothrombotic activities. The distal complement activation product, C5b-9, triggers intracellular Ca fluxes in epithelial and endothelial cells. Histones activate the NLRP3 inflammasome, products of which can damage cells. C5a also activates MAPKs and Akt signaling pathways in cardiomyocytes, causing buildup of [Ca]i, defective action potentials and substantial cell dysfunction, resulting in cardiac and other organ dysfunction. Cardiac dysfunction can be quantitated by ECHO-Doppler parameters. In vivo interventions that block these complement-dependent products responsible for organ dysfunction in sepsis reduce the intensity of sepsis. The obvious targets in sepsis are C5a and its receptors, histones, and perhaps the MAPK pathways. Blockade of C5 has been considered in sepsis, but the FDA-approved antibody (eculizumab) is known to compromise defenses against neisseria and pneumonococcal bacteria, and requires immunization before the mAb to C5 can be used clinically. Small molecular blocking agents for C5aRs are currently in development and may be therapeutically effective for treatment of sepsis.


Assuntos
Complemento C5a/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Sepse/metabolismo , Animais , Sinalização do Cálcio , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Macrófagos/patologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Sepse/patologia , Sepse/terapia
4.
Front Med (Lausanne) ; 7: 616957, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425963

RESUMO

The wide use of the mouse model of polymicrobial sepsis has provided important evidence for events occurring in infectious sepsis involving septic mice and septic humans. Nearly 100 clinical trials in humans with sepsis have been completed, yet there is no FDA-approved drug. Our studies of polymicrobial sepsis have highlighted the role of complement activation products (especially C5a anaphylatoxin and its receptors C5aR1 and C5aR2) in adverse effects of sepsis. During sepsis, the appearance of these complement products is followed by appearance of extracellular histones in plasma, which have powerful proinflammatory and prothrombotic activities that cause cell injury and multiorgan dysfunction in septic mice. Similar responses occur in septic humans. Histone appearance in plasma is related to complement activation and appearance of C5a and its interaction with its receptors. Development of the cardiomyopathy of sepsis also depends on C5a, C5a receptors and histones. Neutralization of C5a with antibody or absence of C5aR1 blocks appearance of extracellular histones and cell and organ failure in sepsis. Survival rates in septic mice are greatly improved after blockade of C5a with antibody. We also review the various strategies in sepsis that greatly reduce the development of life-threatening events of sepsis.

5.
Biomed Res Int ; 2018: 4302726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364002

RESUMO

We determined the roles of TLR3 and TLR9 in adverse events of polymicrobial sepsis, with a focus on development of septic cardiomyopathy, progression of which we have recently shown to be complement- and histones-dependent. So Wt, TLR3-knocked out (K.O.), and TLR9-K.O. mice were subjected to polymicrobial sepsis following cecal ligation and puncture (CLP). In the absence of either TLR3 or TLR9, the intensity of echocardiogram (Echo)-Doppler dysfunction during development of cardiomyopathy was substantially reduced in the K.O. mice. Based on our prior studies emphasizing the adverse effects of plasma C5a and histones in the cardiomyopathy of sepsis, in TLR3- and TLR9-K.O. mice, there were striking reductions in plasma levels of C5a and histones as well as reduced levels of cytokines in plasma and heart tissue after CLP. Since we know that histones cause cardiac dysfunction, rat cardiomyocytes (CMs) were exposed in vitro to the histones (purified from calf thymus), which caused bleb formation on the surfaces of CMs, suggesting histones may perturb the cell membrane of CMs. In vitro, exposure of CMs to the histones for 3 hours caused lactate dehydrogenase release from CMs. These data indicate that sepsis-induced cardiac dysfunction requires presence of TLR3 and TLR9 and may be linked to histone-induced damage of CMs.


Assuntos
Cardiomiopatias/imunologia , Histonas/imunologia , Miócitos Cardíacos/imunologia , Sepse/imunologia , Receptor 3 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Animais , Cardiomiopatias/sangue , Cardiomiopatias/genética , Histonas/sangue , Histonas/genética , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Sepse/sangue , Sepse/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
6.
FASEB J ; 31(9): 4129-4139, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28572445

RESUMO

Polymicrobial sepsis in mice causes myocardial dysfunction after generation of the complement anaphylatoxin, complement component 5a (C5a). C5a interacts with its receptors on cardiomyocytes (CMs), resulting in redox imbalance and cardiac dysfunction that can be functionally measured and quantitated using Doppler echocardiography. In this report we have evaluated activation of MAPKs and Akt in CMs exposed to C5a in vitro and after cecal ligation and puncture (CLP) in vivo In both cases, C5a in vitro caused activation (phosphorylation) of MAPKs and Akt in CMs, which required availability of both C5a receptors. Using immunofluorescence technology, activation of MAPKs and Akt occurred in left ventricular (LV) CMs, requiring both C5a receptors, C5aR1 and -2. Use of a water-soluble p38 inhibitor curtailed activation in vivo of MAPKs and Akt in LV CMs as well as the appearance of cytokines and histones in plasma from CLP mice. When mouse macrophages were exposed in vitro to LPS, activation of MAPKs and Akt also occurred. The copresence of the p38 inhibitor blocked these activation responses. Finally, the presence of the p38 inhibitor in CLP mice reduced the development of cardiac dysfunction. These data suggest that polymicrobial sepsis causes cardiac dysfunction that appears to be linked to activation of MAPKs and Akt in heart.-Fattahi, F., Kalbitz, M., Malan, E. A., Abe, E., Jajou, L., Huber-Lang, M. S., Bosmann, M., Russell, M. W., Zetoune, F. S., Ward, P. A. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction.


Assuntos
Complemento C5a/metabolismo , Regulação da Expressão Gênica/fisiologia , Cardiopatias/etiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Animais , Complemento C5a/genética , Cardiopatias/metabolismo , Interleucinas , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo
7.
J Innate Immun ; 9(3): 300-317, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28171866

RESUMO

Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1ß was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4.


Assuntos
Histonas/imunologia , Inflamassomos/metabolismo , Inflamação/imunologia , Pulmão/imunologia , Fagócitos/imunologia , Animais , Células Cultivadas , Humanos , Interleucina-1beta/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
FASEB J ; 30(12): 3997-4006, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27543123

RESUMO

Cardiac dysfunction develops during sepsis in humans and rodents. In the model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), we investigated the role of the NLRP3 inflammasome in the heart. Mouse heart homogenates from sham-procedure mice contained high mRNA levels of NLRP3 and IL-1ß. Using the inflammasome protocol, exposure of cardiomyocytes (CMs) to LPS followed by ATP or nigericin caused release of mature IL-1ß. Immunostaining of left ventricular frozen sections before and 8 h after CLP revealed the presence of NLRP3 and IL-1ß proteins in CMs. CLP caused substantial increases in mRNAs for IL-1ß and NLRP3 in CMs which are reduced in the absence of either C5aR1 or C5aR2. After CLP, NLRP3-/- mice showed reduced plasma levels of IL-1ß and IL-6. In vitro exposure of wild-type CMs to recombinant C5a (rC5a) caused elevations in both cytosolic and nuclear/mitochondrial reactive oxygen species (ROS), which were C5a-receptor dependent. Use of a selective NOX2 inhibitor prevented increased cytosolic and nuclear/mitochondrial ROS levels and release of IL-1ß. Finally, NLRP3-/- mice had reduced defects in echo/Doppler parameters in heart after CLP. These studies establish that the NLRP3 inflammasome contributes to the cardiomyopathy of polymicrobial sepsis.-Kalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huber-Lang, M., Russell, M. W., Ward, P. A. Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis.


Assuntos
Complemento C5a/metabolismo , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/metabolismo , Animais , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
J Immunol ; 197(6): 2353-61, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521340

RESUMO

There is accumulating evidence during sepsis that cardiomyocyte (CM) homeostasis is compromised, resulting in cardiac dysfunction. An important role for complement in these outcomes is now demonstrated. Addition of C5a to electrically paced CMs caused prolonged elevations of intracellular Ca(2+) concentrations during diastole, together with the appearance of spontaneous Ca(2+) transients. In polymicrobial sepsis in mice, we found that three key homeostasis-regulating proteins in CMs were reduced: Na(+)/K(+)-ATPase, which is vital for effective action potentials in CMs, and two intracellular Ca(2+) concentration regulatory proteins, that is, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and the Na(+)/Ca(2+) exchanger. Sepsis caused reduced mRNA levels and reductions in protein concentrations in CMs for all three proteins. The absence of either C5a receptor mitigated sepsis-induced reductions in the three regulatory proteins. Absence of either C5a receptor (C5aR1 or C5aR2) diminished development of defective systolic and diastolic echocardiographic/Doppler parameters developing in the heart (cardiac output, left ventricular stroke volume, isovolumic relaxation, E' septal annulus, E/E' septal annulus, left ventricular diastolic volume). We also found in CMs from septic mice the presence of defective current densities for Ik1, l-type calcium channel, and Na(+)/Ca(2+) exchanger. These defects were accentuated in the copresence of C5a. These data suggest complement-related mechanisms responsible for development of cardiac dysfunction during sepsis.


Assuntos
Coinfecção/imunologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Sepse/imunologia , Sepse/fisiopatologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/imunologia , Coinfecção/microbiologia , Coinfecção/fisiopatologia , Complemento C5a/imunologia , Citoplasma/química , Citoplasma/metabolismo , Coração/fisiopatologia , Camundongos , Miócitos Cardíacos/microbiologia , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sepse/complicações
10.
Mediators Inflamm ; 2016: 1340156, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382187

RESUMO

C5a is an inflammatory mediator generated by complement activation that positively regulates various arms of immune defense, including Toll-like receptor 4 (TLR4) signaling. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is activated by pathogen products and cellular/tissue damage products and is a major contributor of IL-1ß. In this study, we investigate whether C5a modulates lipopolysaccharide- (LPS-) induced NLRP3 inflammasome activation in myeloid cells. Appearance of plasma IL-1ß during endotoxemia was reduced in C5aR1(-/-) mice when compared to wild-type mice. In vitro, C5a significantly enhanced LPS-induced production of IL-1ß in bone marrow Ly6C-high inflammatory monocytes, accompanied by augmented intracellular pro-IL-1ß expression. This effect was abolished during p38 blockade by SB 203580 and in the absence of C5aR1. Conversely, C5a suppressed LPS-induced macrophage production of IL-1ß, which was accompanied by attenuated levels of pro-IL-1ß, NLRP3, and caspase-1 expression. C5a's suppressive effects were negated during phosphoinositide 3-kinase (PI3K) inhibition by wortmannin but were largely preserved in the absence of C5aR1. Thus, C5a bidirectionally amplifies TLR4-mediated NLRP3 inflammasome activation in monocytes while suppressing this pathway in macrophages. However, as C5aR1 deficiency attenuates the IL-1ß response to LPS challenge in vivo, our results suggest overall that C5a augments physiologic inflammasome responses.


Assuntos
Inflamassomos/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Animais , Western Blotting , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Complemento C5a/metabolismo , Complemento C5a/farmacologia , Modelos Animais de Doenças , Endotoxemia/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Immunol Res ; 61(3): 177-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25680340

RESUMO

Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 h followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage.


Assuntos
Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Macrófagos Peritoneais/imunologia , Neutrófilos/imunologia , Sepse/metabolismo , Animais , Ceco/cirurgia , Células Cultivadas , Modelos Animais de Doenças , Fluoresceína-5-Isotiocianato/química , Histonas/química , Humanos , Infusões Intravenosas , Fígado/imunologia , Fígado/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Sepse/imunologia
12.
FASEB J ; 29(5): 2185-93, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25681459

RESUMO

The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction.


Assuntos
Cardiomiopatias/etiologia , Modelos Animais de Doenças , Histonas/efeitos adversos , Mitocôndrias/patologia , Sepse/complicações , Animais , Cálcio/metabolismo , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Proteínas de Transporte/fisiologia , Caspase 1/fisiologia , Células Cultivadas , Histonas/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Sepse/sangue , Sepse/patologia , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia
13.
J Immunol ; 194(3): 868-72, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539817

RESUMO

In the early stages of sepsis, lymphocytes undergo apoptosis, resulting in lymphopenia and immunosuppression. The trigger for septic lymphopenia is unknown. Using the polymicrobial model of murine sepsis, we investigated the role of C5a receptors in septic lymphopenia. In wild-type mice, cecal ligation and puncture resulted in splenocyte apoptosis and significant lymphopenia after 3 d, which was not observed in C5aR1(-/-) or C5aR2(-/-) mice. Our data show that mouse neutrophils exposed to recombinant mouse C5a cause release of histones in a dose-dependent and time-dependent manner. Histone levels in spleen were significantly elevated following cecal ligation and puncture but were reduced by the absence of C5aR1. Histones induced significant lymphocyte apoptosis in vitro. Ab-mediated neutralization of histones prevented the development of lymphopenia in sepsis. Together, these results describe a new pathway of septic lymphopenia involving complement and extracellular histones. Targeting of this pathway may have therapeutic benefit for patients with sepsis or other serious illness.


Assuntos
Linfopenia/etiologia , Linfopenia/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Sepse/complicações , Animais , Apoptose , Complemento C5a/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Espaço Extracelular , Histonas/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética
14.
J Immunol ; 193(11): 5668-77, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25348624

RESUMO

Severe sepsis and septic shock are leading causes of morbidity and mortality worldwide. Infection-associated inflammation promotes the development and progression of adverse outcomes in sepsis. The effects of heterodimeric IL-27 (p28/EBI3) have been implicated in the natural course of sepsis, whereas the molecular mechanisms underlying the regulation of gene expression and release of IL-27 in sepsis are poorly understood. We studied the events regulating the p28 subunit of IL-27 in endotoxic shock and polymicrobial sepsis following cecal ligation and puncture. Neutralizing Abs to IL-27(p28) improved survival rates, restricted cytokine release, and reduced bacterial burden in C57BL/6 mice during sepsis. Genetic disruption of IL-27 signaling enhanced the respiratory burst of macrophages. Experiments using splenectomized mice or treatment with clodronate liposomes suggested that macrophages in the spleen may be a significant source of IL-27(p28) during sepsis. In cultures of TLR4-activated macrophages, the frequency of F4/80(+)CD11b(+)IL-27(p28)(+) cells was reduced by the addition of IL-10. IL-10 antagonized both MyD88-dependent and TRIF-dependent release of IL-27(p28). Genetic deletion of STAT3 in Tie2-Cre/STAT3flox macrophages completely interrupted the inhibition of IL-27(p28) by IL-10 after TLR4 activation. In contrast, IL-10 remained fully active to suppress IL-27(p28) with deletion of SOCS3 in Tie2-Cre/SOCS3flox macrophages. Blockade of IL-10R by Ab or genetic deficiency of IL-10 resulted in 3-5-fold higher concentrations of IL-27(p28) in endotoxic shock and polymicrobial sepsis. Our studies identify IL-10 as a critical suppressing factor for IL-27(p28) production during infection-associated inflammation. These findings may be helpful for a beneficial manipulation of adverse IL-27(p28) release during sepsis.


Assuntos
Interleucina-10/metabolismo , Interleucinas/metabolismo , Macrófagos/fisiologia , Fator de Transcrição STAT3/metabolismo , Sepse/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Carga Bacteriana , Ceco/cirurgia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interleucina-10/genética , Interleucinas/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Receptores de Citocinas/genética , Receptores de Interleucina , Fator de Transcrição STAT3/genética , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Receptor 4 Toll-Like/imunologia
15.
J Innate Immun ; 6(5): 695-705, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24861731

RESUMO

Sepsis, both in humans and in rodents, is associated with persistent immunosuppression accompanied by defects in innate immunity during the acute phase of sepsis. Mice were rendered septic by cecal ligation and puncture (CLP) followed by the induction of acute lung injury, employing distal airway deposition of IgG immune complexes, in order to quantitatively evaluate innate immune responses following the induction of sepsis. Suppression of innate immune responses in the lung occurred as early as 12 h after CLP and up to 21 days thereafter. The mechanism of innate immune defects included a reduced leak of albumin into the lungs together with reduced levels of tumor necrosis factor in bronchoalveolar lavage fluids and increased levels of interleukin-10 that were persistent. Bone marrow-derived neutrophils (polymorphonuclear neutrophils; PMNs) from CLP mice also had reduced levels of the activation marker CD11b and a depressed respiratory burst following stimulation in vitro. These results were not observed in mice with endotoxemia, where the innate inflammatory response was preserved. However, sustained lymphopenia was present in both models, suggesting differential regulation of innate and adaptive immunity in the two sepsis models. These data indicate that CLP induced a prolonged suppression of inflammatory responses both in the lung and systemically, as defined by bone marrow-derived PMN dysfunction.


Assuntos
Lesão Pulmonar Aguda/imunologia , Endotoxemia/imunologia , Pulmão/patologia , Neutrófilos/imunologia , Sepse/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Ceco/cirurgia , Células Cultivadas , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Humanos , Imunoglobulina G/administração & dosagem , Terapia de Imunossupressão , Interleucina-10/metabolismo , Lipopolissacarídeos/administração & dosagem , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
16.
J Immunol ; 192(12): 5974-83, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24795455

RESUMO

The inflammasome is a key factor in innate immunity and senses soluble pathogen and danger-associated molecular patterns as well as biological crystals (urate, cholesterol, etc.), resulting in expression of IL-1ß and IL-18. Using a standard model of acute lung injury (ALI) in mice featuring airway instillation of LPS, ALI was dependent on availability of NLRP3 as well as caspase-1, which are known features of the NLRP3 inflammasome. The appearance of IL-1ß, a product of NLRP3 inflammasome activation, was detected in bronchoalveolar lavage fluids (BALF) in a macrophage- and neutrophil-dependent manner. Neutrophil-derived extracellular histones appeared in the BALF during ALI and directly activated the NLRP3 inflammasome. Ab-mediated neutralization of histones significantly reduced IL-1ß levels in BALF during ALI. Inflammasome activation by extracellular histones in LPS-primed macrophages required NLRP3 and caspase-1 as well as extrusion of K(+), increased intracellular Ca(2+) concentration, and generation of reactive oxygen species. NLRP3 and caspase-1 were also required for full extracellular histone presence during ALI, suggesting a positive feedback mechanism. Extracellular histone and IL-1ß levels in BALF were also elevated in C5a-induced and IgG immune complex ALI models, suggesting a common inflammatory mechanism. These data indicate an interaction between extracellular histones and the NLRP3 inflammasome, resulting in ALI. Such findings suggest novel targets for treatment of ALI, for which there is currently no known efficacious drug.


Assuntos
Lesão Pulmonar Aguda/imunologia , Proteínas de Transporte/imunologia , Inflamassomos/imunologia , Macrófagos Alveolares/imunologia , Neutrófilos/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Proteínas de Transporte/genética , Caspase 1/genética , Caspase 1/imunologia , Modelos Animais de Doenças , Histonas/genética , Histonas/imunologia , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/patologia
17.
J Innate Immun ; 6(5): 607-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642449

RESUMO

The main drivers of acute inflammation are macrophages, which are known to have receptors for catecholamines. Based on their function, macrophages are broadly categorized as having either M1 (proinflammatory) or M2 phenotypes (anti-inflammatory). In this study, we investigated catecholamine-induced alterations in the phenotype of activated macrophages. In the presence of lipopolysaccharide (LPS), mouse peritoneal macrophages acquired an M1 phenotype. However, the copresence of LPS and either epinephrine or norepinephrine resulted in a strong M2 phenotype including high levels of arginase-1 and interleukin-10, and a reduced expression of M1 markers. Furthermore, epinephrine enhanced macrophage phagocytosis and promoted type 2 T-cell responses in vitro, which are known features of M2 macrophages. Analysis of M2 subtype-specific markers indicated that LPS and catecholamine-cotreated macrophages were not alternatively activated but were rather of the regulatory macrophage subtype. Interestingly, catecholamines signaled through the ß2-adrenergic receptor but not the canonical cAMP/protein kinase A signaling pathway. Instead, the M2 pathway required an intact phosphoinositol 3-kinase pathway. Blockade of the ß2-adrenergic receptor reduced survival and enhanced injury in mouse models of endotoxemia and LPS-induced acute lung injury, respectively. These results demonstrate a role for the ß2-adrenergic receptor in promoting the M2 macrophage phenotype.


Assuntos
Lesão Pulmonar Aguda/imunologia , Endotoxemia/imunologia , Macrófagos Peritoneais/imunologia , Receptores Adrenérgicos beta 2/metabolismo , Células Th2/imunologia , Animais , Catecolaminas/metabolismo , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Epinefrina/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Ativação Linfocitária , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Fagocitose , Fenótipo , Transdução de Sinais
18.
FASEB J ; 27(12): 5010-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23982144

RESUMO

We investigated how complement activation promotes tissue injury and organ dysfunction during acute inflammation. Three models of acute lung injury (ALI) induced by LPS, IgG immune complexes, or C5a were used in C57BL/6 mice, all models requiring availability of both C5a receptors (C5aR and C5L2) for full development of ALI. Ligation of C5aR and C5L2 with C5a triggered the appearance of histones (H3 and H4) in bronchoalveolar lavage fluid (BALF). BALF from humans with ALI contained H4 histone. Histones were absent in control BALF from healthy volunteers. In mice with ALI, in vivo neutralization of H4 with IgG antibody reduced the intensity of ALI. Neutrophil depletion in mice with ALI markedly reduced H4 presence in BALF and was highly protective. The direct lung damaging effects of extracellular histones were demonstrated by airway administration of histones into mice and rats (Sprague-Dawley), which resulted in ALI that was C5a receptor-independent, and associated with intense inflammation, PMN accumulation, damage/destruction of alveolar epithelial cells, together with release into lung of cytokines/chemokines. High-resolution magnetic resonance imaging demonstrated lung damage, edema and consolidation in histone-injured lungs. These studies confirm the destructive C5a-dependent effects in lung linked to appearance of extracellular histones.


Assuntos
Lesão Pulmonar Aguda/imunologia , Ativação do Complemento , Complemento C5a/imunologia , Espaço Extracelular/metabolismo , Histonas/imunologia , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/genética , Citocinas/metabolismo , Espaço Extracelular/imunologia , Histonas/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Ratos , Ratos Sprague-Dawley , Receptores de Complemento/imunologia , Receptores de Complemento/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 304(12): L863-72, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23564505

RESUMO

Zonulin is a protein involved in the regulation of tight junctions (TJ) in epithelial or endothelial cells. Zonulin is known to affect TJ in gut epithelial cells, but little is known about its influences in other organs. Prehaptoglobin2 has been identified as zonulin and is related to serine proteases (MASPs, C1qrs) that activate the complement system. The current study focused on the role of zonulin in development of acute lung injury (ALI) in C57BL/6 male mice following intrapulmonary deposition of IgG immune complexes. A zonulin antagonist (AT-1001) and a related peptide with permeability agonist activities (AT-1002) were employed and given intratracheally or intravenously. Also, zonulin was blocked in lung with a neutralizing antibody. In a dose-dependent manner, AT-1001 or zonulin neutralizing antibody attenuated the intensity of ALI (as quantitated by albumin leak, neutrophil accumulation, and proinflammatory cytokines). A similar pattern was found using the bacterial lipopolysaccharide model of ALI. Using confocal microscopy on sections of injured lungs, staining patterns for TJ proteins were discontinuous, reduced, and fragmented. As expected, the leak of blood products into the alveolar space confirmed the passage of 3 and 20 kDa dextran, and albumin. In contrast to AT-1001, application of the zonulin agonist AT-1002 intensified ALI. Zonulin both in vitro and in vivo induced generation of complement C3a and C5a. Collectively, these data suggest that zonulin facilitates development of ALI both by enhancing albumin leak and complement activation as well as increased buildup of neutrophils and cytokines during development of ALI.


Assuntos
Lesão Pulmonar Aguda/imunologia , Toxina da Cólera/genética , Proteínas do Sistema Complemento/agonistas , Precursores de Proteínas/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Complexo Antígeno-Anticorpo/farmacologia , Toxina da Cólera/agonistas , Toxina da Cólera/antagonistas & inibidores , Toxina da Cólera/imunologia , Ativação do Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Haptoglobinas , Imunoglobulina G/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Permeabilidade/efeitos dos fármacos , Precursores de Proteínas/agonistas , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/imunologia , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/imunologia , Junções Íntimas/patologia , Traqueia/efeitos dos fármacos , Traqueia/imunologia , Traqueia/patologia
20.
Eur J Immunol ; 43(7): 1907-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23575697

RESUMO

The complement activation product, C5a, is a key factor for regulation of inflammatory responses. C5a and C5adesArg bind to their receptors, C5aR and C5L2, but the functional roles of C5L2 remain controversial. We screened the patterns of 23 inflammatory mediators in cultures of LPS-activated mouse peritoneal elicited macrophages (PEMs) in the presence or absence of recombinant mouse C5a. Production of most mediators studied was suppressed by C5a, whereas G-CSF production was enhanced. G-CSF gene expression and secretion from PEMs was amplified two- to threefold by C5a in a dose- and time-dependent fashion. The degradation product C5adesArg promoted lower levels of G-CSF. The effects of C5a on G-CSF were associated with activation of PI3K/Akt and MEK1/2 signaling pathways. C5a did not enhance G-CSF production in cultures of PEMs from either C5aR- or C5L2-deficient mice, indicating that both C5a receptors are indispensable for mediating the effects of C5a in the production of G-CSF. Finally, G-CSF levels in plasma during polymicrobial sepsis after cecal ligation and puncture were substantially lower in C5aR- or C5L2-deficient mice as compared with that in C57BL/6J WT mice. These findings elucidate the functional characteristics of the C5L2 receptor during the acute inflammatory response.


Assuntos
Complemento C5a/imunologia , Fator Estimulador de Colônias de Granulócitos/biossíntese , Inflamação/imunologia , Receptores de Quimiocinas/imunologia , Receptores de Complemento/imunologia , Doença Aguda , Animais , Complemento C5a/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fator Estimulador de Colônias de Granulócitos/imunologia , Inflamação/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptor da Anafilatoxina C5a , Receptores de Quimiocinas/metabolismo , Receptores de Complemento/metabolismo , Sepse/imunologia , Sepse/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...