Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 661: 124412, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960339

RESUMO

Process Analytical Technology (PAT) has revolutionized pharmaceutical manufacturing by providing real-time monitoring and control capabilities throughout the production process. This review paper comprehensively examines the application of PAT methodologies specifically in the production of solid active pharmaceutical ingredients (APIs). Beginning with an overview of PAT principles and objectives, the paper explores the integration of advanced analytical techniques such as spectroscopy, imaging modalities and others into solid API substance production processes. Novel developments in in-line monitoring at academic level are also discussed. Emphasis is placed on the role of PAT in ensuring product quality, consistency, and compliance with regulatory requirements. Examples from existing literature illustrate the practical implementation of PAT in solid API substance production, including work-up, crystallization, filtration, and drying processes. The review addresses the quality and reliability of the measurement technologies, aspects of process implementation and handling, the integration of data treatment algorithms and current challenges. Overall, this review provides valuable insights into the transformative impact of PAT on enhancing pharmaceutical manufacturing processes for solid API substances.

2.
Int J Pharm ; 635: 122701, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36773730

RESUMO

In the present study, a reduced-order model is proposed to analyze a novel continuous dryer with an application in the pharmaceutical industry. The model was validated using process data from ibuprofen drying test runs, and the results were in good agreement with the experimental data. The test substance was an ibuprofen paste with an initial LOD of up to 30 w%. The simulations showed that the contact heat transfer coefficient can be correlated with the degree of wetness. Furthermore, a set of simulations was performed to analyze the influence of input parameters on the dryer's performance: i) the inlet air flow rate and ii) the inlet air temperature. The simulation results demonstrated that a variation in the inlet air temperature significantly affects the air temperature profile, while the inlet air flow rate has a minor effect. Besides, it was also established that the inlet solid LoD has the most considerable effect on the product quality (e.g., final solid moisture content). The results showed a deviation of less than 10% for the product LoD and the product temperature in most cases.


Assuntos
Temperatura Alta , Ibuprofeno , Temperatura , Dessecação/métodos , Simulação por Computador
3.
Eur J Pharm Biopharm ; 184: 92-102, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707008

RESUMO

Active pharmaceutical ingredients (APIs) often reveal shapes challenging to process, e.g. acicular structures, and exhibit reduced bioavailability induced by slow dissolution rate. Leveraging the API particles' surface and bulk properties offers an attractive pathway to circumvent these challenges. Inkjet printing is an attractive processing technique able to tackle these limitations already in initial stages when little material is available, while particle properties are maintained over the entire production scale. Additionally, it is applicable to a wide range of formulations and offers the possibility of co-processing with a variety of excipients to improve the API's bioavailability. This study addresses the optimization of particle shapes for processability enhancement and demonstrates the successful application of inkjet printing to engineer spherical lacosamide particles, which are usually highly acicular. By optimizing the ink formulation, adapting the substrate-liquid interface and tailoring the heat transfer to the particle, spherical particles in the vicinity of 100 µm, with improved flow properties compared to the bulk material, were produced. Furthermore, the particle size was tailored reproducibly by adjusting the deposited ink volume per cycle and the number of printing cycles. Therefore, the present study shows a novel, reliable, scalable and economical strategy to overcome challenging particle morphologies by co-processing an API with suitable excipients.


Assuntos
Excipientes , Agulhas , Excipientes/química , Impressão/métodos , Tamanho da Partícula , Impressão Tridimensional
4.
Pharm Res ; 40(1): 281-294, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36380170

RESUMO

PURPOSE: New drug development and delivery approaches result in an ever-increasing demand for tailored microparticles with defined sizes and structures. Inkjet printing technologies could be promising new processes to engineer particles with defined characteristics, as they are created to precisely deliver liquid droplets with high uniformity. METHODS: D-mannitol was used as a model compound alone or co-processed with the pore former agent ammonium bicarbonate, and the polymer polyethylene glycol 200. Firstly, a drop shape analyzer was used to characterize and understand ink/substrate interactions, evaporation, and solidification kinetics. Consequently, the process was transferred to a laboratory-scale inkjet printer and the resulting particles collected, characterized and compared to others obtained via an industrial standard technique. RESULTS: The droplet shape analysis allowed to understand how 3D structures are formed and helped define the formulation and process parameters for inkjet printing. By adjusting the drop number and process waveform, spherical particles with a mean size of approximately 100 µm were obtained. The addition of pore former and polymer allowed to tailor the crystallization kinetics, resulting in particles with a different surface (i.e., spike-like surface) and bulk (e.g. porous and non-porous) structure. CONCLUSION: The workflow described enabled the production of 3D structures via inkjet printing, demonstrating that this technique can be a promising approach to engineer microparticles.


Assuntos
Polímeros , Fluxo de Trabalho
5.
J Pharm Innov ; : 1-9, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35646193

RESUMO

Purpose: Inkjet printing has the potential to enable novel personalized and tailored drug therapies based on liposome and lipid nanoparticles. However, due to the significant shear force exerted on the jetted fluids, its suitability for shear-sensitive materials such as liposomes, has not been verified. We have conducted a proof-of-concept study to examine whether the particle concentration and size distribution of placebo liposomes are affected by common inkjet/dispensing technologies. Methods: We have subjected three types of liposome-containing fluids ("inks") to two different commercial dispensing/jetting technologies, which are relevant to most drug printing approaches. The liposome jetting processes were observed in real-time using strobographic imaging techniques. The phospholipid concentrations and particle size distributions were determined before and after jetting via enzymatic colorimetric and dynamic light scattering methods, respectively. Results: Our results have shown that the jetting dynamics of the liposome inks are well predicted by the established inkjet printing regime map based on their physical properties and the jetting conditions. Importantly, although significant shear forces were confirmed during jetting, the liposome concentrations and particle size distributions in the collected samples remain largely unaffected. Conclusion: These findings, we believe, provide the essential proof-of-concept to encourage further development in this highly topical research area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...