Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(33): 22698-22709, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502823

RESUMO

Herein we report the one-pot cobalt catalysed synthesis of the dimethylacetal of acetaldehyde from synthesis gas and methanol. The product can be used as a fuel additive either as it is or after transacetalisation with long-chain alcohols. The product is obtained at moderate temperatures in good selectivities and high CO-conversions. A variation of the promotor metal (Au, Pt, Pd, and Ru) and of the support (γ-Al2O3 and CeO2) in the catalyst was conducted, which showed a great impact of both the support and promotor on the activity and structure of the catalyst. Furthermore, a specific variation of temperatures and pressure for the most active catalyst and a model catalyst was conducted giving an interesting insight into ongoing processes.

2.
RSC Adv ; 12(12): 7374-7382, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424697

RESUMO

Aldehydes and ketones are known to play a role in the aging process of pyrolysis oil and generally, aldehydes are known for their high reactivity. In order to discern in pyrolysis oil the total aldehyde concentration from that of the ketones, a procedure for the quantification of aldehydes by 1H-NMR was developed. Its capability is demonstrated with a hardwood pyrolysis oil at different stages of the aging process. It was treated by the Accelerated Aging Test at 80 °C for durations of up to 48 h. The aldehyde concentration was complemented by the total concentration of carbonyls, quantified by carbonyl titration. The measurements show, that the examined hardwood pyrolysis oil contained 0.31-0.40 mmol g-1 aldehydes and 4.36-4.45 mmol g-1 ketones. During the first 24 h, the aldehyde concentration declined by 23-39% and the ketone concentration by 9%. The rate of decline of aldehyde concentration slows down within 24 h but is still measureable. In contrast, the total carbonyl content does not change significantly after an initial decline within the first 4 h. Changes for vinylic, acetalic, phenolic and hydroxyl protons and for protons in the α-position to hydroxy, ether, acetalic and ester groups were detected, by 1H-NMR. In the context of characterizing pyrolysis oil and monitoring the aging process, 1H-NMR is a reliable tool to assess the total concentration of aldehydes. It confirms the reactivity of aldehydes and ketones and indicates their contribution to the instability of pyrolysis oil.

3.
RSC Adv ; 11(5): 2556-2564, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424220

RESUMO

Catalyst systems for the conversion of synthesis gas, which are tolerant to fluctuating CO/CO2 gas compositions, have great potential for process-technical applications, related to the expected changes in the supply of synthesis gas. Copper-based catalysts usually used in the synthesis of methanol play an important role in this context. We investigated the productivity characteristics for their application in direct dimethyl ether (DME) synthesis as a function of the CO2/CO x ratio over the complete range from 0 to 1. For this purpose, we compared an industrial Cu/ZnO/Al2O3 methanol catalyst with a self-developed Cu/ZnO/ZrO2 catalyst prepared by a continuous coprecipitation approach. For DME synthesis, catalysts were combined with two commercial dehydration catalysts, H-FER 20 and γ-Al2O3, respectively. Using a standard testing procedure, we determined the productivity characteristics in a temperature range between 483 K and 523 K in a fixed bed reactor. The combination of Cu/ZnO/ZrO2 and H-FER 20 provided the highest DME productivity with up to 1017 gDME (kgCu h)-1 at 523 K, 50 bar and 36 000 mlN (g h)-1 and achieved DME productivities higher than 689 gDME (kgCu h)-1 at all investigated CO2/CO x ratios under the mentioned conditions. With the use of Cu/ZnO/ZrO2//H-FER 20 a promising operating range between CO2/CO x 0.47 and 0.8 was found where CO as well as CO2 can be converted with high DME selectivity. First results on the long-term stability of the system Cu/ZnO/ZrO2//H-FER 20 showed an overall reduction of 27.0% over 545 h time on stream and 14.6% between 200 h and 545 h under variable feed conditions with a consistently high DME selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...