Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2218679120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812719

RESUMO

The ways in which seabirds navigate over very large spatial scales remain poorly understood. While olfactory and visual information can provide guidance over short distances, their range is often limited to 100s km, far below the navigational capacity of wide-ranging animals such as albatrosses. Infrasound is a form of low-frequency sound that propagates for 1,000s km in the atmosphere. In marine habitats, its association with storms and ocean surface waves could in effect make it a useful cue for anticipating environmental conditions that favor or hinder flight or be associated with profitable foraging patches. However, behavioral responses of wild birds to infrasound remain untested. Here, we explored whether wandering albatrosses, Diomedea exulans, respond to microbarom infrasound at sea. We used Global Positioning System tracks of 89 free-ranging albatrosses in combination with acoustic modeling to investigate whether albatrosses preferentially orientate toward areas of 'loud' microbarom infrasound on their foraging trips. We found that in addition to responding to winds encountered in situ, albatrosses moved toward source regions associated with higher sound pressure levels. These findings suggest that albatrosses may be responding to long-range infrasonic cues. As albatrosses depend on winds and waves for soaring flight, infrasonic cues may help albatrosses to identify environmental conditions that allow them to energetically optimize flight over long distances. Our results shed light on one of the great unresolved mysteries in nature, navigation in seemingly featureless ocean environments.


Assuntos
Aves , Sinais (Psicologia) , Animais , Aves/fisiologia , Vento , Olfato , Som
2.
Hear Res ; 428: 108679, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587457

RESUMO

The dimensions of auditory structures among animals of varying body size can have implications for hearing performance. Larger animals often have a hearing range focused on lower frequencies than smaller animals, which may be explained by several anatomical mechanisms in the ear and their scaling relationships. While the effect of size on ear morphology and hearing performance has been explored in some mammals, anurans and lizards, much less is known about the scaling relationships for the single-ossicle, internally-coupled ears of birds. Using micro- and nano-CT scans of the tympanic middle and inner ears of 127 ecologically and phylogenetically diverse bird species, spanning more than 400-fold in head mass (2.3 to 950 g), we undertook phylogenetically-informed scaling analyses to test whether 12 morphological traits, of functional importance to hearing, maintain their relative proportions with increasing head mass. We then extended our analysis by regressing these morphological traits with measures of hearing sensitivity and range to better understand morphological underpinnings of hearing performance. We find that most auditory structures scale together in equal proportions, whereas columella length increases disproportionately. We also find that the size of several auditory structures is associated with increased hearing sensitivity and frequency hearing limits, while head mass did not explain these measures. Although both birds and mammals demonstrate proportional scaling between auditory structures, the consequences for hearing in each group may diverge due to unique morphological predictors of auditory performance.


Assuntos
Orelha Interna , Audição , Animais , Orelha Média/diagnóstico por imagem , Orelha Média/anatomia & histologia , Mamíferos , Aves
3.
Sci Rep ; 12(1): 5251, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347167

RESUMO

Birds exhibit wide variation in their use of aquatic environments, on a spectrum from entirely terrestrial, through amphibious, to highly aquatic. Although there are limited empirical data on hearing sensitivity of birds underwater, mounting evidence indicates that diving birds detect and respond to sound underwater, suggesting that some modifications of the ear may assist foraging or other behaviors below the surface. In air, the tympanic middle ear acts as an impedance matcher that increases sound pressure and decreases sound vibration velocity between the outside air and the inner ear. Underwater, the impedance-matching task is reversed and the ear is exposed to high hydrostatic pressures. Using micro- and nano-CT (computerized tomography) scans of bird ears in 127 species across 26 taxonomic orders, we measured a suite of morphological traits of importance to aerial and aquatic hearing to test predictions relating to impedance-matching in birds with distinct aquatic lifestyles, while accounting for allometry and phylogeny. Birds that engage in underwater pursuit and deep diving showed the greatest differences in ear structure relative to terrestrial species. In these heavily modified ears, the size of the input areas of both the tympanic membrane and the columella footplate of the middle ear were reduced. Underwater pursuit and diving birds also typically had a shorter extrastapedius, a reduced cranial air volume and connectivity and several modifications in line with reversals of low-to-high impedance-matching. The results confirm adaptations of the middle ear to aquatic lifestyles in multiple independent bird lineages, likely facilitating hearing underwater and baroprotection, while potentially constraining the sensitivity of aerial hearing.


Assuntos
Aves , Orelha Média , Adaptação Fisiológica , Animais , Orelha , Orelha Média/anatomia & histologia , Audição
4.
Biol Rev Camb Philos Soc ; 95(4): 1036-1054, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32237036

RESUMO

The perception of airborne infrasound (sounds below 20 Hz, inaudible to humans except at very high levels) has been documented in a handful of mammals and birds. While animals that produce vocalizations with infrasonic components (e.g. elephants) present conspicuous examples of potential use of infrasound in the context of communication, the extent to which airborne infrasound perception exists among terrestrial animals is unclear. Given that most infrasound in the environment arises from geophysical sources, many of which could be ecologically relevant, communication might not be the only use of infrasound by animals. Therefore, infrasound perception could be more common than currently realized. At least three bird species, each of which do not communicate using infrasound, are capable of detecting infrasound, but the associated auditory mechanisms are not well understood. Here we combine an evaluation of hearing measurements with anatomical observations to propose and evaluate hypotheses supporting avian infrasound detection. Environmental infrasound is mixed with non-acoustic pressure fluctuations that also occur at infrasonic frequencies. The ear can detect such non-acoustic pressure perturbations and therefore, distinguishing responses to infrasound from responses to non-acoustic perturbations presents a great challenge. Our review shows that infrasound could stimulate the ear through the middle ear (tympanic) route and by extratympanic routes bypassing the middle ear. While vibration velocities of the middle ear decline towards infrasonic frequencies, whole-body vibrations - which are normally much lower amplitude than that those of the middle ear in the 'audible' range (i.e. >20 Hz) - do not exhibit a similar decline and therefore may reach vibration magnitudes comparable to the middle ear at infrasonic frequencies. Low stiffness in the middle and inner ear is expected to aid infrasound transmission. In the middle ear, this could be achieved by large air cavities in the skull connected to the middle ear and low stiffness of middle ear structures; in the inner ear, the stiffness of round windows and cochlear partitions are key factors. Within the inner ear, the sizes of the helicotrema and cochlear aqueduct are expected to play important roles in shunting low-frequency vibrations away from low-frequency hair-cell sensors in the cochlea. The basilar papilla, the auditory organ in birds, responds to infrasound in some species, and in pigeons, infrasonic-sensitive neurons were traced back to the apical, abneural end of the basilar papilla. Vestibular organs and the paratympanic organ, a hair cell organ outside of the inner ear, are additional untested candidates for infrasound detection in birds. In summary, this review brings together evidence to create a hypothetical framework for infrasonic hearing mechanisms in birds and other animals.


Assuntos
Audiometria/veterinária , Aves/fisiologia , Audição/fisiologia , Percepção da Altura Sonora/fisiologia , Vocalização Animal/fisiologia , Animais , Comportamento Animal , Aves/anatomia & histologia , Meato Acústico Externo/anatomia & histologia , Meato Acústico Externo/fisiologia , Orelha Interna/anatomia & histologia , Orelha Interna/fisiologia , Orelha Média/anatomia & histologia , Orelha Média/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-27766381

RESUMO

Early amphibious tetrapods may have detected aquatic sound pressure using sound-induced lung vibrations, but their lack of tympanic middle ears would have restricted aerial sensitivity. Sharing these characteristics, salamanders could be models for the carryover of auditory function across an aquatic-terrestrial boundary without tympanic middle ears. We measured amphibious auditory evoked potential audiograms in five phylogenetically and ecologically distinct salamanders (Amphiuma means, Notophthalmus viridescens, Ambystoma talpoideum, Eurycea spp., and Plethodon glutinosus) and tested whether metamorphosis and terrestrial niche were linked to aerial sensitivity. Threshold differences between media varied between species. A. means' relative aerial sensitivity was greatest at 100 Hz and decreased with increasing frequency. In contrast, all other salamanders retained greater sensitivity up to 500 Hz, and in A. talpoideum and Eurycea, relative sensitivity at 500 Hz was higher than at 100 Hz. Aerial thresholds of terrestrial P. glutinosus above 200 Hz were similar to A. talpoideum and Eurycea, but lower than N. viridescens and A. means. Metamorphosis did not affect aerial sensitivity in N. viridescens or A. talpoideum. These results fail to support a hypothesis of terrestrial hearing specialization across ontogeny or phylogeny. We discuss methodological limitations to our amphibious comparisons and factors affecting variation in amphibious performance.


Assuntos
Audição/fisiologia , Metamorfose Biológica/fisiologia , Urodelos/crescimento & desenvolvimento , Urodelos/fisiologia , Ar , Ambystoma/fisiologia , Animais , Audiometria , Limiar Auditivo/fisiologia , Evolução Biológica , Ecossistema , Potenciais Evocados Auditivos/fisiologia , Notophthalmus viridescens/fisiologia , Filogenia , Água
7.
Adv Exp Med Biol ; 877: 93-120, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26515312

RESUMO

Darters (Perciformes, Percidae), sculpins (Perciformes, Cottidae), and gobioids (Gobiiformes, Gobioidei) exhibit convergent life history traits, including a benthic lifestyle and a cavity nesting spawning mode. Soniferous species within these taxa produce pulsed and/or tonal sounds with peak frequencies below 200 Hz (with some exceptions), primarily in agonistic and/or reproductive contexts. The reduced or absent swim bladders found in these taxa limit or prevent both hearing enhancement via pressure sensitivity and acoustic amplification of the contracting sonic muscles, which are associated with the skull and pectoral girdle. While such anatomies constrain communication to low frequency channels, optimization of the S/N (signal-to-noise) ratio in low frequency channels is evident for some gobies, as measured by habitat soundscape frequency windows, nest cavity sound amplification, and audiograms. Similar S/N considerations are applicable to many darter and sculpin systems. This chapter reviews the currently documented diversity of sound production in darters, sculpins, and gobioids within a phylogenetic context, examines the efficacy of signal transmission from senders to receivers (sound production mechanisms, audiograms, and masking challenges), and evaluates the potential functional significance of sound attributes in relation to territorial and reproductive behaviours.


Assuntos
Comunicação Animal , Limiar Auditivo/fisiologia , Audição/fisiologia , Perciformes/fisiologia , Acústica , Sacos Aéreos/fisiologia , Animais , Evolução Biológica , Ecossistema , Perciformes/classificação , Som , Espectrografia do Som , Especificidade da Espécie
8.
Artigo em Inglês | MEDLINE | ID: mdl-26194768

RESUMO

Animals exhibit unique hearing adaptations in relation to the habitat media in which they reside. This study was a comparative analysis of auditory specialization in relation to habitat medium in Testudines, a taxon that includes both highly aquatic and fully terrestrial members. Evoked potential audiograms were collected in four species groups representing diversity along the aquatic-terrestrial spectrum: terrestrial and fossorial Gopherus polyphemus, terrestrial Terrapene carolina carolina, and aquatic Trachemys scripta and Sternotherus (S. odoratus and S. minor). Additionally, underwater sensitivity was tested in T. c. carolina, T. scripta, and Sternotherus with tympana submerged just below the water surface. In aerial audiograms, T. c. carolina were most sensitive, with thresholds 18 dB lower than Sternotherus. At 100-300 Hz, thresholds in T. c. carolina, G. polyphemus, and T. scripta were similar to each other. At 400-800 Hz, G. polyphemus thresholds were elevated to 11 dB above T. c. carolina. The underwater audiograms of T. c. carolina, T. scripta, and Sternotherus were similar. The results suggest aerial hearing adaptations in emydids and high-frequency hearing loss associated with seismic vibration detection in G. polyphemus. The underwater audiogram of T. c. carolina could reflect retention of ancestral aquatic auditory function.


Assuntos
Limiar Auditivo/fisiologia , Meio Ambiente , Potenciais Evocados Auditivos/fisiologia , Tartarugas/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Audiometria , Feminino , Masculino , Psicoacústica , Especificidade da Espécie , Tartarugas/classificação , Estados Unidos , Água
9.
J Exp Biol ; 216(Pt 6): 1075-84, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23197092

RESUMO

Neural responses to sensory stimuli often differ between sexes, vary seasonally, and can be regulated by endocrine activity, but the ecological and physiological mechanisms driving such patterns are not well understood. The current study examined how auditory function in the round goby (Neogobius melanostomus), a vocal teleost, co-varied with sex, reproductive condition and female plasma 17ß-estradiol level. Auditory evoked potentials were collected in response to tone pips (100-600 Hz) and a natural round goby pulse vocalization. Additionally, saccule hair cell densities were compared across reproductive groups. Auditory threshold was evaluated in terms of pressure and particle acceleration, and response amplitude and onset latency were measured at 10 dB above threshold. Relative to males, females displayed lower auditory thresholds in response to the natural vocalization and to tones at 300-600 Hz, and had a higher density of saccule hair cells. The 17ß-estradiol level was positively associated with amplitude and latency for the pulse stimulus and with both threshold and amplitude for tones at 100-200 Hz in females. Relative to non-reproductive males, reproductive males exhibited longer response latencies at 100-200 Hz. The results demonstrate sexual dimorphism in auditory function in a teleost fish as well as intra-sexual variation, partially based on hormone levels. The current research further identifies links between auditory function and reproductive behaviors in fishes and provides a finer-scaled analysis of how this behavior is reflected at the level of the sensory systems facilitating signal reception.


Assuntos
Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Estradiol/sangue , Potenciais Evocados Auditivos/fisiologia , Perciformes/fisiologia , Caracteres Sexuais , Análise de Variância , Animais , Audiometria , Feminino , Masculino , Reprodução/fisiologia , Sáculo e Utrículo/anatomia & histologia , Vocalização Animal/fisiologia
10.
Zoology (Jena) ; 114(6): 369-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21993061

RESUMO

Animal communication often involves multimodal signals, and interactions between sensory modalities can trigger unique responses in receivers. Response to social signals was investigated in fire-bellied toads by exposing them to playback of male calls (advertisement and release calls) and a video clip of a male conspecific in the laboratory. The cues were presented in isolation and as a combined bimodal stimulus, and approach frequency, latency to approach and time spent around the stimulus source were measured. No positive phonotaxis was observed toward the advertisement call, both during the day and during a phonotaxis trial performed at night. However, females, but not males, approached with greater frequency, lower latency, and spent more time near the source of the bimodal stimulus in an experiment involving the advertisement call. Female response was specific to the advertisement call, as approach was not increased when the release call was used. Males, on the other hand, did not show increased approach in the advertisement call experiment, but approached with greater frequency the bimodal stimulus involving the release call within the first minute of stimulus presentation. The findings suggest that females orient toward calling males and that males eavesdrop on release calls, but in both cases a visual stimulus is also needed to trigger a response. Social approach in Bombina orientalis is thus dependent on multisensory cues, and the nature of the interaction between sensory modalities depends on receiver sex and call type.


Assuntos
Anuros , Comportamento Social , Vocalização Animal , Animais , Escuridão , Feminino , Hibernação , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...