Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Appl Oral Sci ; 32: e20230439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896638

RESUMO

OBJECTIVE: To evaluate the effect of the labiolingual diameter and construction of an endodontically treated (ET) anterior tooth with crown restoration on stress distribution and biomechanical safety under occlusal loading. METHODOLOGY: Three-dimensional finite element models were generated for maxillary central incisors with all-ceramic crown restorations. The labiolingual diameters of the tooth, defined as the horizontal distance between the protrusion of the labial and lingual surfaces, were changed as follows: (D1) 6.85 mm, (D2) 6.35 mm, and (D3) 5.85 mm. The model was constructed as follows: (S0) vital pulp tooth; (S1) ET tooth; (S2) ET tooth with a 2 mm ferrule, restored with a fiber post and composite resin core; (S3) ET tooth without a ferrule, restored with a fiber post and composite resin core. A total of 12 models were developed. In total, two force loads (100 N) were applied to the crown's incisal edge and palatal surface at a 45° oblique angle to the longitudinal axis of the teeth. The Von Mises stress distribution and maximum stress of the models were analyzed. RESULTS: Regardless of the loading location, stress concentration and maximum stress (34.07~66.78MPa) in all models occurred in the labial cervical 1/3 of each root. Both labiolingual diameter and construction influenced the maximum stress of the residual tooth tissue, with the impact of the labiolingual diameter being greater. A reduction in labiolingual diameter led to increased maximum stress throughout the tooth. The ferrule reduced the maximum stress of the core of S2 models (7.15~10.69 MPa), which is lower compared with that of S3 models (19.45~43.67 MPa). CONCLUSION: The labiolingual diameter exerts a greater impact on the biomechanical characteristics of ET anterior teeth with crown restoration, surpassing the influence of the construction. The ferrule can reduce the maximum stress of the core and maintain the uniformity of stress distribution.


Assuntos
Resinas Compostas , Coroas , Análise do Estresse Dentário , Análise de Elementos Finitos , Incisivo , Dente não Vital , Dente não Vital/fisiopatologia , Humanos , Fenômenos Biomecânicos , Incisivo/anatomia & histologia , Incisivo/fisiologia , Resinas Compostas/química , Análise do Estresse Dentário/métodos , Técnica para Retentor Intrarradicular , Reprodutibilidade dos Testes , Estresse Mecânico , Valores de Referência , Força de Mordida , Imageamento Tridimensional/métodos , Planejamento de Prótese Dentária , Teste de Materiais , Coroa do Dente/anatomia & histologia , Coroa do Dente/fisiologia
2.
J. appl. oral sci ; 32: e20230439, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1558238

RESUMO

Abstract Objective To evaluate the effect of the labiolingual diameter and construction of an endodontically treated (ET) anterior tooth with crown restoration on stress distribution and biomechanical safety under occlusal loading. Methodology Three-dimensional finite element models were generated for maxillary central incisors with all-ceramic crown restorations. The labiolingual diameters of the tooth, defined as the horizontal distance between the protrusion of the labial and lingual surfaces, were changed as follows: (D1) 6.85 mm, (D2) 6.35 mm, and (D3) 5.85 mm. The model was constructed as follows: (S0) vital pulp tooth; (S1) ET tooth; (S2) ET tooth with a 2 mm ferrule, restored with a fiber post and composite resin core; (S3) ET tooth without a ferrule, restored with a fiber post and composite resin core. A total of 12 models were developed. In total, two force loads (100 N) were applied to the crown's incisal edge and palatal surface at a 45° oblique angle to the longitudinal axis of the teeth. The Von Mises stress distribution and maximum stress of the models were analyzed. Results Regardless of the loading location, stress concentration and maximum stress (34.07~66.78MPa) in all models occurred in the labial cervical 1/3 of each root. Both labiolingual diameter and construction influenced the maximum stress of the residual tooth tissue, with the impact of the labiolingual diameter being greater. A reduction in labiolingual diameter led to increased maximum stress throughout the tooth. The ferrule reduced the maximum stress of the core of S2 models (7.15~10.69 MPa), which is lower compared with that of S3 models (19.45~43.67 MPa). Conclusion The labiolingual diameter exerts a greater impact on the biomechanical characteristics of ET anterior teeth with crown restoration, surpassing the influence of the construction. The ferrule can reduce the maximum stress of the core and maintain the uniformity of stress distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...