Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol (Mosk) ; 51(3): 447-459, 2017.
Artigo em Russo | MEDLINE | ID: mdl-28707661

RESUMO

In murine bone-marrow stromal microenvironment cells and in human multipotent mesenchymal stromal cells (MMSCs), proinflammatory cytokine interleukin-1 beta (IL-1ß) serves as a growth factor. In murine bone tissue, IL-1ß expression increases in vivo after irradiation. Here, we have presented our evaluation of the effects of exogenous IL-1ß on the expression of NF-kB transcription factors in human MMSCs and stromal layer cells of murine long-term bone marrow cultures (LTBMCs). The cytokine signaling pathway was also activated in murine LTBMC by braking electron radiation in doses of 3-12 Gy. The level of expression of genes that code for IL-1ß, IL-1ß type-I receptor and NF-kB and IKK protein families have been studied at different time points post exposure. In both human and murine stromal cells, exogenous IL-1ß led to an increase in the level of expression of its own gene, while levels of expression of NF-kB and IKK gene families were not substantially changed. Nevertheless, in human cells, a significant correlation between levels of expression of IL-1ß and all NF-kB family genes was detected. It points to a similarity in IL-1ß signal pathways in mesenchymal and hematopoietic cells, where the posttranslational modifications of NF-kB transcription factors play a major role. The irradiation of murine LTBMC resulted in a transient increase in the expression of genes that code NF-kB transcription factors and IL-1ß. These results indicate an important role of Rel, Rela, Relb, and Nfkb2 genes in the induction of IL-1ß signal pathway in murine stromal cells. An increase in IL-1ß expression after the irradiation of stromal cells may be related to both the induction of inflammation due to massive cell death and to a profound stimulation of the expression of this proinflammatory cytokine expression.


Assuntos
Interleucina-1beta/biossíntese , Células-Tronco Mesenquimais/metabolismo , Subunidade p52 de NF-kappa B/genética , Fator de Transcrição RelA/genética , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos da radiação , Células Cultivadas , Raios gama , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Quinase I-kappa B/biossíntese , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos , NF-kappa B/biossíntese , Subunidade p52 de NF-kappa B/biossíntese , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Fator de Transcrição RelA/biossíntese
2.
Biochemistry (Mosc) ; 79(12): 1363-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25716730

RESUMO

Allogeneic bone marrow transplantation (allo-BMT) is currently the only way to cure many hematoproliferative disorders. However, allo-BMT use is limited by severe complications, the foremost being graft-versus-host disease (GVHD). Due to the lack of efficiency of the existing methods of GVHD prophylaxis, new methods are being actively explored, including the use of donors' multipotent mesenchymal stromal cells (MMSC). In this work, we analyzed the results of acute GVHD (aGVHD) prophylaxis by means of MMSC injections after allo-BMT in patients with hematological malignancies. The study included 77 patients. They were randomized into two groups - those receiving standard prophylaxis of aGVHD and those who were additionally infused with MMSC derived from the bone marrow of hematopoietic stem cell donors. We found that the infusion of MMSC halves the incidence of aGVHD and increases the overall survival of patients. Four of 39 MMSC samples were ineffective for preventing aGVHD. Analysis of individual donor characteristics (gender, age, body mass index) and the MMSC properties of these donors (growth parameters, level of expression of 30 genes involved in proliferation, differentiation, and immunomodulation) revealed no significant difference between the MMSC that were effective or ineffective for preventing aGVHD. We used multiple logistic regression to establish a combination of features that characterize the most suitable MMSC samples for the prevention of aGVHD. A model predicting MMSC sample success for aGVHD prophylaxis was constructed. Significant model parameters were increased relative expression of the FGFR1 gene in combination with reduced expression levels of the PPARG and IGF1 genes. Depending on the chosen margin for probability of successful application of MMSC, this model correctly predicts the outcome of the use of MMSC in 82-94% of cases. The proposed model of prospective evaluation of the effectiveness of MMSC samples will enable prevention of the development of aGVHD in the maximal number of patients.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doadores de Tecidos , Doença Aguda , Adolescente , Adulto , Feminino , Doença Enxerto-Hospedeiro/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Sobrevida , Transplante Homólogo/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...