Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Bioprint ; 9(2): 656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065672

RESUMO

The printing accuracy of polymer melt electrowriting is adversely affected by the residual charge entrapped within the fibers, especially for three-dimensional (3D) structured materials or multilayered scaffolds with small interfiber distances. To clarify this effect, an analytical charge-based model is proposed herein. The electric potential energy of the jet segment is calculated considering the amount and distribution of the residual charge in the jet segment and the deposited fibers. As the jet deposition proceeds, the energy surface assumes different patterns, which constitute different modes of evolution. The manner in which the various identified parameters affect the mode of evolution are represented by three charge effects, including the global, local, and polarization effect. Based on these representations, typical modes of energy surface evolution are identified. Moreover, the lateral characteristic curve and characteristic surface are advanced to analyze the complex interplay between fiber morphologies and residual charge. Different parameters contribute to this interplay either by affecting residual charge, fiber morphologies, or the three charge effects. To validate this model, the effects of lateral location and grid number (i.e., number of fibers printed in each direction) on the fiber morphologies are investigated. Moreover, the "fiber bridging" phenomenon in parallel fiber printing is successfully explained. These results help to comprehensively understand the complex interplay between the fiber morphologies and the residual charge, thus furnishing a systematic workflow to improve printing accuracy.

2.
Sci Rep ; 12(1): 3364, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233043

RESUMO

The application of microfluidics technology in additive manufacturing is an emerging approach that makes possible the fabrication of functional three-dimensional cell-laden structured biomaterials. A key challenge that needs to be addressed using a microfluidic-based printhead (MBP) is increasing the controllability over the properties of the fabricated microtissue. Herein, an MBP platform is numerically simulated for the fabrication of solid and hollow microfibers using a microfluidic channel system with high level of controllability over the microfiber geometrical outcomes. Specifically, the generation of microfibers is enabled by studying the effects of microfluidic-based bioprinting parameters that capture the different range of design, bioink material, and process parameter dependencies as numerically modeled as a multiphysics problem. Furthermore, the numerical model is verified and validated, exhibiting good agreement with literature-derived experimental data in terms of microfiber geometrical outcomes. Additionally, a predictive mathematical formula that correlates the dimensionless process parameters with dimensionless geometrical outcomes is presented to calculate the geometrical outcomes of the microfibers. This formula is expected to be applicable for bioinks within a prescribed range of the density and viscosity value. The MBP applications are highlighted towards precision fabrication of heterogeneous microstructures with functionally graded properties to be used in organ generation, disease modeling, and drug testing studies.


Assuntos
Bioimpressão , Bioimpressão/métodos , Microfluídica , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...