Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 24(1): 19-34, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14652211

RESUMO

We used a combination of eddy flux, canopy, soil and environmental measurements with an integrated biophysical model to analyze the seasonality of component carbon (C) fluxes and their contribution to ecosystem C exchange in a 50-year-old Scots pine forest (Pinus sylvestris L.) in eastern Finland (62 degrees 47' N, 30 degrees 58' E) over three climatically contrasting years (2000-2002). Eddy flux measurements showed that the growing Scots pine forest was a sink for CO2, with annual net C uptakes of 131, 210 and 258 g C m-2> year-1 in 2000, 2001 and 2002, respectively. The integrated process model reproduced the annual course of daily C flux above the forest canopy as measured by the eddy covariance method once the site-specific component parameters were estimated. The model explained 72, 66 and 68% of the variation in daily net C flux in 2000, 2001 and 2002, respectively. Modeled annual C loss by respiration was 565, 629 and 640 g C m-2 year-1, accounting for 77, 77 and 65% of annual gross C uptake, respectively. Carbon fluxes from the forest floor were the dominant contributors to forest ecosystem respiration, with the fractions of annual respiration from the forest floor, foliage and wood being 46-62, 27-44 and 9-10%, respectively. The wide range in daily net C uptake during the growing season was largely attributable to day-to-day fluctuations in incident quantum irradiance. During just a few days in early spring and late autumn, ecosystem net C exchange varied between source and sink as a result of large daily changes in temperature. The forest showed a greater reduction in gross C uptake by photosynthesis than in C loss by respiration during the dry summer of 2000, indicating that interannual variability in ecosystem net C uptake at this site was modified mostly by summer rainfall and vapor pressure deficit.


Assuntos
Ecossistema , Pinus/fisiologia , Árvores/fisiologia , Carbono/metabolismo , Modelos Teóricos , Solo , Tempo (Meteorologia)
2.
Ann Bot ; 92(1): 89-96, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12763759

RESUMO

Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed for 4 years in environment-controlled chambers that maintained: (1) ambient conditions (CON); (2) elevated atmospheric CO2 concentration (ambient + 350 micro mol mol-1; EC); (3) elevated temperature (ambient +2-6 degrees C; ET); or (4) elevated CO2 and elevated temperature (ECT). The dark respiration rates of 1-year-old shoots, from which needles had been partly removed, were measured over the growing season in the fourth year. In all treatments, the temperature coefficient of respiration, Q10, changed with season, being smaller during the growing season than at other times. Respiration rate varied diurnally and seasonally with temperature, being highest around mid-summer and declining gradually thereafter. When measurements were made at the temperature of the chamber, respiration rates were reduced by the EC treatment relative to CON, but were increased by ET and ECT treatments. However, respiration rates at a reference temperature of 15 degrees C were reduced by ET and ECT treatments, reflecting a decreased capacity for respiration at warmer temperatures (negative acclimation). The interaction between season and treatment was not significant. Growth respiration did not differ between treatments, but maintenance respiration did, and the differences in mean daily respiration rate between the treatments were attributable to the maintenance component. We conclude that maintenance respiration should be considered when modelling respiratory responses to elevated CO2 and elevated temperature, and that increased atmospheric temperature is more important than increasing CO2 when assessing the carbon budget of pine forests under conditions of climate change.


Assuntos
Dióxido de Carbono/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Pinus/efeitos dos fármacos , Pinus/metabolismo , Estações do Ano , Temperatura , Carbono/metabolismo , Meio Ambiente , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...