Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 671: 423-433, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38815377

RESUMO

The development of a portable smartphone-based electrochemical sensor for analyzing adrenaline levels in real samples can make a great contribution to the research community worldwide. In order to achieve this goal, the key challenge is to build sensing interfaces with excellent electrocatalytic properties. In this work, microspherical bimetallic metal-organic frameworks (CoNi-MOF) consisting of nanoclusters were first synthesized using a hydrothermal method. On this basis, the catalytic activity of pure chitosan-polyacrylamide hydrogel (CS-PAM) was modulated by adding different amounts of CoNi-MOF during the in-situ synthesis of CS-PAM. Finally, a portable electrochemical detection system based on CS-PAM was established for the detection of adrenaline. A series of resulting composite hydrogels with a large specific surface area, abundant active sites, and unique network structure facilitate the enrichment and catalysis of adrenaline molecules. Under optimal conditions, the analytical platform constructed by using CoNi-MOF-based CS-PAM has the advantages of a wide detection range (0.5-10 and 10-2500 µM), a low detection limit (0.167 µM), and high sensitivity (0.182 and 0.133 µA·µM·cm-2). In addition, the sensor maintains selective detection of the target in the presence of many different types of interferences, and the current response is not significantly reduced even after 60 cycles of testing. We strongly believe that the designed smart portable sensing can realize the accurate determination of adrenaline in complex systems, and this study can provide new ideas for the research of MOFs-based hydrogels in electrochemical analysis.

2.
Biosensors (Basel) ; 12(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36354484

RESUMO

Three novel two-dimensional metalloporphyrin COFs (MPor-COF-366, M = Fe, Mn, Cu) were fabricated by changing the metal atoms in the center of the porphyrin framework. The physicochemical characteristics of MPor-COF-366 (M = Fe, Mn, Cu) composites were fully analyzed by diverse electron microscopy and spectroscopy. Under optimal conditions, experiments on determining butylated hydroxy anisole (BHA) at FePor-COF-366/GCE were conducted using differential pulse voltammetry (DPV). It is noted that the FePor-COF-366/GCE sensor showed excellent electrocatalytic performance in the electrochemical detection of BHA, compared with MnPor-COF-366/GCE and CuPor-COF-366/GCE. A linear relationship was obtained for 0.04-1000 µM concentration of BHA, with a low detection limit of 0.015 µM. Additionally, the designed sensor was successfully employed to detect BHA in practical samples, expanding the development of COF-based composites in electrochemical applications.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Metaloporfirinas , Estruturas Metalorgânicas/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Hidroxianisol Butilado , Domínio Catalítico
3.
Molecules ; 28(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36615337

RESUMO

Metal-organic frameworks (MOFs) have been broadly applied to numerous domains with a substantial surface area, tunable pore size, and multiple unsaturated metal sites. Recently, hollow MOFs have greatly attracted the scientific community due to their internal cavities and gradient pore structures. Hollow MOFs have a higher tunability, faster mass-transfer rates, and more accessible active sites when compared to traditional, solid MOFs. Hollow MOFs are also considered to be candidates for some functional material carriers. For example, composite materials such as hollow MOFs and metal nanoparticles, metal oxides, and enzymes have been prepared. These composite materials integrate the characteristics of hollow MOFs with functional materials and are broadly used in many aspects. This review describes the preparation strategies of hollow MOFs and their composites as well as their applications in organic catalysis, electrochemical sensing, and adsorption separation. Finally, we hope that this review provides meaningful knowledge about hollow-MOF composites and their derivatives and offers many valuable references to develop hollow-MOF-based applied materials.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Adsorção , Metais , Catálise , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...