Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 3(7): 983-1000, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183849

RESUMO

Acetyl-CoA is a central node in carbon metabolism and plays critical roles in regulatory and biosynthetic processes. The acetyl-CoA synthetase Acs2, which catalyses acetyl-CoA production from acetate, is an integral subunit of the serine-responsive SAM-containing metabolic enzyme (SESAME) complex, but the precise function of Acs2 within the SESAME complex remains unclear. Here, using budding yeast, we show that Acs2 within the SESAME complex is required for the regulation of telomere silencing and cellular senescence. Mechanistically, the SESAME complex interacts with the histone acetyltransferase SAS protein complex to promote histone H4K16 acetylation (H4K16ac) enrichment and the occupancy of bromodomain-containing protein, Bdf1, at subtelomeric regions. This interaction maintains telomere silencing by antagonizing the spreading of Sir2 along the telomeres, which is enhanced by acetate. Consequently, dissociation of Sir2 from telomeres by acetate leads to compromised telomere silencing and accelerated chronological ageing. In human endothelial cells, ACSS2, the ortholog of yeast Acs2, also interacts with H4K16 acetyltransferase hMOF and are required for acetate to increase H4K16ac, reduce telomere silencing and induce cell senescence. Altogether, our results reveal a conserved mechanism to connect cell metabolism with telomere silencing and cellular senescence.


Assuntos
Acetilcoenzima A/metabolismo , Carbono/metabolismo , Senescência Celular/fisiologia , Complexos Multienzimáticos/metabolismo , Células Endoteliais/metabolismo , Inativação Gênica , Histonas/metabolismo , Humanos , Saccharomycetales/fisiologia , Telômero/genética , Telômero/metabolismo
2.
Nat Commun ; 12(1): 594, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500413

RESUMO

Telomeres are organized into a heterochromatin structure and maintenance of silent heterochromatin is required for chromosome stability. How telomere heterochromatin is dynamically regulated in response to stimuli remains unknown. Pyruvate kinase Pyk1 forms a complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex) to regulate gene expression by phosphorylating histone H3T11 (H3pT11). Here, we identify a function of SESAME in regulating telomere heterochromatin structure. SESAME phosphorylates H3T11 at telomeres, which maintains SIR (silent information regulator) complex occupancy at telomeres and protects Sir2 from degradation by autophagy. Moreover, SESAME-catalyzed H3pT11 directly represses autophagy-related gene expression to further prevent autophagy-mediated Sir2 degradation. By promoting H3pT11, serine increases Sir2 protein levels and enhances telomere silencing. Loss of H3pT11 leads to reduced Sir2 and compromised telomere silencing during chronological aging. Together, our study provides insights into dynamic regulation of silent heterochromatin by histone modifications and autophagy in response to cell metabolism and aging.


Assuntos
Instabilidade Cromossômica , Histonas/metabolismo , Complexos Multienzimáticos/metabolismo , Saccharomyces cerevisiae/genética , Telômero/metabolismo , Autofagia , Regulação Fúngica da Expressão Gênica , Heterocromatina/metabolismo , Fosforilação , Proteólise , Piruvato Quinase/metabolismo , Saccharomyces cerevisiae/enzimologia , Serina/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...