Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(25): 37149-37166, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379554

RESUMO

Light scattering characteristics of the cyanobacterium Microcystis are investigated with numerical models for sphere aggregates. During summer bloom seasons, Microcystis is prevalent in many inland waters across the globe. Monitoring concentrations with remote sensing techniques requires knowledge of the inherent optical properties (IOPs), especially the backscattering properties of Microcystis cells and colonies in natural settings. In situ measurements in waters dominated by Microcystis blooms have previously detected extremely high backscattering ratios, i.e., bb/b>0.043 at 443 nm [1], the highest to our knowledge in the natural environment. These highbb/bvalues could hold promise as a diagnostic tool in identifying and monitoring Microcystis using optical approaches. However, it has been unclear how this type of optically 'soft' organic particle can generate such highbb/bvalues. In this study, the Multiple Sphere T-matrix (MSTM) model is used to calculate the IOPs of model colonies, including bb/b. Colony sizes in the model ranged from several cells to several hundred and both colony packing density and cell gas vacuole content were varied. Results are compared with model results for equivalent-volume spheres (EVS) and direct in situ measurements. Colony formation was required in the modeling to reproduce the high bb/bconsistent with in situ measurements. The combination of moderate to very dense colony (packing density >30%) and high gas vacuole content in individual cells (volume percentage >20%) was the most favorable condition leading to rapid increases in bb/bwith increasing number of cells Ncell of the colony. Significant linear correlations were observed betweenbb/b and Ncell1/3 for these colonies, wherebb/b increased beyond 0.04 once cell number reached about 1000 cells in the case with the most densely packed cells and highest gas vacuole content. Within commonly observed colony sizes (Ncell <106), colonies with high gas vacuole content exhibited bb/bvalues up to 0.055, consistent with direct measurements from Lake Erie. Polarized scattering was also of interest as a diagnostic tool, particularly with future Earth-orbiting polarimeters being deployed for the NASA Plankton, Aerosols, Cloud, ocean Ecosystem (PACE) mission. The Degree of Linear Polarization (DoLP), expressed by the ratio of two Mueller matrix elements-P12/P11, decreased with increasing colony cell number for Microcystis. Another ratio of two Mueller matrix elementsP22/P11, an index for nonsphericity, also decreased with increasing colony size. In addition to higher relative backscattering, greater colony packing density and larger gas vacuole sizes both led to lower DoLP peak magnitude and lowerP22/P11. An optical opposition feature due to constructive phase interference that was observed previously for cosmic dusts is also present for these modeled colonies, manifested by a narrow intensity peak and negative polarization dip near exact backscattering direction, gradually forming as colony size increases.


Assuntos
Eutrofização , Luz , Microcystis/fisiologia , Espalhamento de Radiação , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Análise Espacial
2.
Opt Express ; 27(20): A1441-A1457, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684497

RESUMO

The invariant-imbedding T-matrix (II-TM) method is a numerical method for accurately computing the single-scattering properties of dielectric particles. Because of the linearity of Maxwell's equations, the incident electric field and the scattered electric field can be related through a transition matrix (T-Matrix). The II-TM method computes the T-matrix through a matrix recurrence formula which stems from an electromagnetic volume integral equation. The recurrence starts with an inscribed sphere within the particle and ends with the circumscribed sphere of the particle. For each iteration, a matrix known as the U-matrix is computed with the Gauss Legendre (GL) quadrature, and matrix inversion is subsequently performed to obtain the T-matrix corresponding to the portion of the particle enclosed by the spherical shell. We modify a commonly used scheme to avoid applying the quadrature scheme to discontinuities. Moreover, we apply a new scheme to generate nodes and weights in conjunction with the GL quadrature. This leads to a considerable improvement on convergence and computational efficiency in the cases of hexagonal prisms and spheroids. The basic shapes of ice crystals in the atmosphere are hexagonal columns and plates. The single-scattering properties of hexagonal ice prisms are important to atmospheric optics, radiative transfer, and remote sensing. We demonstrate that the present approach can significantly accelerate the convergence in simulating light scattering by hexagonal ice crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...