Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(5): e2208942, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36349885

RESUMO

As key parameters of electrocatalysts, the density and utilization of active sites determine the electrocatalytic performance toward oxygen reduction reaction. Unfortunately, prevalent oxygen electrocatalysts fail to maximize the utilization of active sites due to inappropriate nanostructural design. Herein, a nano-emulsion induced polymerization self-assembly strategy is employed to prepare hierarchical meso-/microporous N/S co-doped carbon nanocage with atomically dispersed FeN4 (denoted as Meso/Micro-FeNSC). In situ scanning electrochemical microscopy technology reveals the density of available active sites for Meso/Micro-FeNSC reach to 3.57 × 1014 sites cm-2 , representing more than threefold improvement compared to micropore-dominant Micro-FeNSC counterpart (1.07 × 1014 sites cm-2 ). Additionally, the turnover frequency of Meso/Micro-FeNSC is also improved to 0.69 from 0.50 e- site-1 s-1 for Micro-FeNSC. These properties motivate Meso/Micro-FeNSC as efficient oxygen electroreduction electrocatalyst, in terms of outstanding half-wave potential (0.91 V), remarkable kinetic mass specific activity (68.65 A g-1 ), and excellent robustness. The assembled Zn-air batteries with Meso/Micro-FeNSC deliver high peak power density (264.34 mW cm-2 ), large specific capacity (814.09 mA h g-1 ), and long cycle life (>200 h). This work sheds lights on quantifying active site density and the significance of maximum utilization of active sites for rational design of advanced catalysts.

2.
Small ; 18(15): e2107225, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218295

RESUMO

Atomically nitrogen-coordinated iron atoms on carbon (FeNC) catalysts are emerging as attractive materials to substitute precious-metal-based catalysts for the oxygen reduction reaction (ORR). However, FeNC usually suffers from unsatisfactory performance due to the symmetrical charge distribution around the iron site. Elaborately regulating the microenvironment of the central Fe atom can substantially improve the catalytic activity of FeNC, which remains challenging. Herein, N/S co-doped porous carbons are rationally prepared and are verified with rich Fe-active sites, including atomically dispersed FeN4 and Fe nanoclusters (FeSA-FeNC@NSC), according to systematically synchrotron X-ray absorption spectroscopy analysis. Theoretical calculation verifies that the contiguous S atoms and Fe nanoclusters can break the symmetric electronic structure of FeN4 and synergistically optimize 3d orbitals of Fe centers, thus accelerating OO bond cleavage in OOH* for improving ORR activity. The FeSA-FeNC @NSC delivers an impressive ORR activity with half-wave-potential of 0.90 V, which exceeds that of state-of-the-art Pt/C (0.87 V). Furthermore, FeSA-FeNC @NSC-based Zn-air batteries deliver excellent power densities of 259.88 and 55.86 mW cm-2 in liquid and all-solid-state flexible configurations, respectively. This work presents an effective strategy to modulate the microenvironment of single atomic centers and boost the catalytic activity of single-atom catalysts by tandem effect.


Assuntos
Ferro , Oxigênio , Carbono , Nitrogênio , Porosidade
3.
Small ; 18(11): e2106122, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35048504

RESUMO

Single atom Fe-nitrogen-carbon (Fe-N-C) catalysts have high catalytic activity and selectivity for the oxygen reduction reaction (ORR), and are possible alternatives for Pt-based materials. However, the reasonable design and selection of precursors to establish their relationship with Fe-N-C catalyst performance is still a formidable task. Herein, precursors with controllable structures are easily achieved through isomer engineering, with the purpose of regulating the active site density and microscopic morphology of the final electrocatalyst. As-proof-of-concept, phenylenediamine isomers-based polymers are used as precursors to fabricate Fe-N-C catalysts. The Fe-PpPD-800 derived from p-phenylenediamine shows that the best ORR activity with a half-wave potential (E1/2 ) reaches 0.892 V vs reversible hydrogen electrode (RHE), which is better than the counterparts derived from o-phenylenediamine (Fe-PoPD-800) and m-phenylenediamine (Fe-PmPD-800), even surpassing commercial Pt/C (E1/2  = 0.881 V vs RHE). Furthermore, the self-made zinc-air battery based on Fe-PpPD-800 achieves high power density and specific capacity up to 242 mW cm-2 and 873 mA h gZn -1 respectively, a stable open circuit voltage of 1.45 V, and excellent cycling stability. This work not only proves the practicability of adjusting the catalytic activity of single-atom catalysts through isomer engineering, but also provides an approach to understand the relationship between precursors and target catalysts performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...