Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Liver Int ; 44(8): 1937-1951, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38606676

RESUMO

BACKGROUND AND PURPOSE: Liver fibrosis is a wound-healing reaction which is the main cause of chronic liver diseases worldwide. The activated hepatic stellate cell (aHSC) is the main driving factor in the development of liver fibrosis. Inhibiting autophagy of aHSC can prevent the progression of liver fibrosis, but inhibiting autophagy of other liver cells has opposite effects. Hence, targeted inhibition of autophagy in aHSC is quite necessary for the treatment of liver fibrosis, which prompts us to explore the targeted delivery system of small molecule autophagy inhibitor hydroxychloroquine (HCQ) that can target aHSC and alleviate the liver fibrosis. METHODS: The delivery system of HCQ@retinol-liposome nanoparticles (HCQ@ROL-LNPs) targeting aHSC was constructed by the film dispersion and pH-gradient method. TGF-ß-induced HSC activation and thioacetamide (TAA)-induced liver fibrosis mice model were established, and the targeting ability and therapeutic effect of HCQ@ROL-LNPs in liver fibrosis were studied subsequently in vitro and in vivo. RESULTS: HCQ@ROL-LNPs have good homogeneity and stability. They inhibited the autophagy of aHSC selectively by HCQ and reduced the deposition of extracellular matrix (ECM) and the damage to other liver cells. Compared with the free HCQ and HCQ@LNPs, HCQ@ROL-LNPs had good targeting ability, showing enhanced therapeutic effect and low toxicity to other organs. CONCLUSION: Construction of HCQ@ROL-LNPs delivery system lays a theoretical and experimental foundation for the treatment of liver fibrosis and promotes the development of clinical therapeutic drugs for liver diseases.


Assuntos
Autofagia , Células Estreladas do Fígado , Hidroxicloroquina , Cirrose Hepática , Hidroxicloroquina/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Animais , Autofagia/efeitos dos fármacos , Camundongos , Cirrose Hepática/tratamento farmacológico , Lipossomos , Nanopartículas , Masculino , Modelos Animais de Doenças , Humanos , Tioacetamida , Camundongos Endogâmicos C57BL
2.
Eur J Med Chem ; 264: 115979, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048696

RESUMO

Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.


Assuntos
COVID-19 , Humanos , Quimases , SARS-CoV-2 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Surtos de Doenças , Antivirais/farmacologia , Antivirais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...