Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 471: 134296, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643574

RESUMO

The effective removal of viruses from swine wastewater using anaerobic membrane bioreactor (AnMBR) is vital to ecological safety. However, most studies have focused only on disinfectants, whereas the capabilities of the treatment process have not been investigated. In this study, the performance and mechanism of an AnMBR in the removal of porcine hepatitis E virus (HEV), porcine kobuvirus (PKoV), porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV) are systematically investigated. The results show that the AnMBR effectively removes the four viruses, with average removal efficiencies of 1.62, 3.05, 2.41, and 1.34 log for HEV, PKoV, PEDV and TGEV, respectively. Biomass adsorption contributes primarily to the total virus removal in the initial stage of reactor operation, with contributions to HEV and PKoV removal exceeding 71.7 % and 68.2 %, respectively. When the membrane is fouled, membrane rejection dominated virus removal. The membrane rejection contribution test shows the significant contribution of membrane pore foulants (23-76 %). Correlation analysis shows that the surface characteristics and size differences of the four viruses contribute primarily to their different effects on biomass adsorption and membrane rejection. This study provides technical guidance for viral removal during the treatment of high-concentration swine wastewater using an AnMBR.


Assuntos
Reatores Biológicos , Membranas Artificiais , Águas Residuárias , Animais , Águas Residuárias/virologia , Suínos , Anaerobiose , Vírus de RNA/isolamento & purificação , Purificação da Água/métodos , Adsorção , Biomassa , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos
2.
Water Res ; 219: 118596, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598470

RESUMO

Effective removal of human pathogenic viruses is an indispensable yet rarely studied aspect for sustainable treatment of domestic wastewater by anaerobic membrane bioreactor (AnMBR). In this study, the interface behaviors and removal mechanisms of norovirus genogroup I (GI), genogroup II (GII), and rotavirus A from domestic wastewater was systematically investigated in a one-stage AnMBR. On average, norovirus GI, GII and rotavirus were reduced by 4.64, 5.00, and 2.31 logs, respectively. Viruses tended to be transferred to larger-sized suspended solids from sewage influent to the mixed liquor, and the weight-specific concentration of the virus in >100 µm particles of the mixed liquor was significantly higher than that of sewage, indicating a particle scale-dependent affinity with the virus. In-series membrane filtration test showed the main contribution of the membrane retention, which was dominated by the bio-cake layer and the pristine membrane, while the membrane and associated pore foulants can retain viruses in a filtration resistance-efficient way. An unsteady-state mass balance model revealed that free viruses in the bulk liquid of AnMBR were minimally attached to the cake layer but mainly retained by the membrane and pore foulants (>99%). In addition, despite the small virus decay rates in the mixed liquor, the associated contribution increased with run time due to the prolonged sludge retention time. These insights into virus behaviors and removal mechanisms may provide novel regulation strategies for enhanced virus removal by AnMBR.


Assuntos
Norovirus , Vírus , Anaerobiose , Reatores Biológicos , Humanos , Membranas Artificiais , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
3.
Water Res ; 211: 118055, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042072

RESUMO

Anaerobic membrane bioreactor (AnMBR) is a low-energy and promising solution for sewage treatment. During the treatment, the fouled membrane of AnMBR is recognized as an important barrier against pathogenic viruses. Here, the role of membrane fouling of an AnMBR at room temperature in the virus removal was investigated using MS2 bacteriophage as a virus surrogate. Results revealed that the virus removal efficiency of AnMBR was in the range of 0.2 to 3.6 logs, gradually increasing with the course of AnMBR operation. Virus removal efficiency was found to be significantly correlated with transmembrane pressure (R2=0.92, p<0.01), especially in the rapid fouling stage, indicating that membrane fouling was the key factor in the virus removal. The proportion of virus decreased from 52.03% to 15.04% in the membrane foulants when membrane fouling was aggravating rapidly, yet increased from 0.74% to 21.52% in the mixed liquor. Meanwhile, the permeate flux dramatically dropped. These imply that the primary rejection mechanism of virus by membrane in the slow fouling stage is the virus adsorption onto membrane, while the sieving effect is the main reason in the rapid fouling stage. Ex-situ virus rejection test unveiled that the cake layer was the main contributor to the overall virus rejection, while the greatest resistance-specific virus rejection was provided by the organic pore blocking. This paper provides operation strategies to balance enhanced virus removal and high permeate flux by regulating the membrane fouling process.


Assuntos
Esgotos , Vírus , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...