Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 427: 136690, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37364318

RESUMO

To investigate the synergistic effect of electron beam irradiation (EBI) on the ultra-high pressure (UHP) modification of broad bean starch, various pressures (200, 400, 600 MPa) combined with different irradiation doses (3, 6, 12 kGy) were used to modify the structure-properties of broad bean starch in this study. The results showed that both UHP and EBI induced a reduction of amylopectin molecular weight (Mw) and depolymerization of long chains, caused the loss of short-range ordered structure and imperfection of crystal structure, and improved starch viscosity, solubility and enzyme sensitivity. Furthermore, the applied pressure causes changes in starch granule structure, upon which EBI promotes further degradation and depolymerization of starch by affecting the crystalline and amorphous regions. Hence, appropriate doses of EBI treatment can impart more desirable processing properties to UHP-modified starches, and EBI can be used as a promising way to promote starch modification further.


Assuntos
Fabaceae , Vicia faba , Amido/química , Elétrons , Fabaceae/química , Amilopectina , Viscosidade , Vicia faba/metabolismo , Amilose
2.
Int J Biol Macromol ; 225: 172-184, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36309233

RESUMO

Exploration and synthesis of degradable plastics can alleviate and avoid environmental pollution induced by petroleum-based plastics. In this study, a konjac glucomannan (KGM)/zein/PVA ternary blend plastic was successfully prepared by casting. The results showed that, despite the presence of particle aggregation from incompatible components in blend plastic, the addition of KGM and zein improved its compatibility which is consistent with the formation of continuous dark regions and the reduction of roughness average (Ra) results in the AFM characterization. Also, XRD and FT-IR results indicated that the addition of KGM and zein disrupted the molecular and crystalline structure of PVA, induced stretching vibration of alcohol and hydroxyl groups, and crystallinity reduction. In addition, KGM deacetylation (d-KGM) reduced the intramolecular hydroxyl groups, reduced the water absorption and water vapor transmission rate of the blend plastics, and increased the crystallization temperature (Tc) and melting temperature (Tm). Furthermore, the blended plastics exhibited the best tensile strength (TS), elongation at break (E), and elastic modulus (EM) when the proportion of KGM to zein was 9:1. Notably, the blended plastic with KGM and zein added displayed more pores and cracks after soil burial, implying that the lack of degradability of pure PVA plastic was improved.


Assuntos
Plásticos Biodegradáveis , Zeína , Zeína/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Químicos , Mananas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...