Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(22): 224705, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32534523

RESUMO

Clusters of atoms in dense gold vapor are studied via atomistic simulation with the classical molecular dynamics method. For this purpose, we develop a new embedded atom model potential applicable to the lightest gold clusters and to the bulk gold. Simulation provides the equilibrium vapor phases at several subcritical temperatures, in which the clusters comprising up to 26 atoms are detected and analyzed. The cluster size distributions are found to match both the two-parameter model and the classical nucleation theory with the Tolman correction. For the gold liquid-vapor interface, the ratio of the Tolman length to the radius of a molecular cell in the liquid amounts to ∼0.16, almost exactly the value at which both models are identical. It is demonstrated that the lightest clusters have the chain-like structure, which is close to the freely jointed chain. Thus, the smallest clusters can be treated as the quasi-fractals with the fractal dimensionality close to two. Our analysis indicates that the cluster structural transition from the solid-like to chain-like geometry occurs in a wide temperature range around 2500 K.

2.
Data Brief ; 28: 104980, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909103

RESUMO

Interaction of ultrashort laser pulses with materials can bring the latter to highly non-equilibrium states, where the electronic temperature strongly differs from the ionic one. The properties of such excited material can be considerably different from those in a hot, but equilibrium state. The reliable modeling of laser-irradiated target requires careful analysis of its properties in both regimes. This paper reports a procedure which provides the equations of state of ruthenium using density functional theory calculations. The obtained data are fitted with analytical functions. The constructed equations of state are applicable in the one- and two-temperature regimes and in a wide range of densities, temperatures and pressures. The electron thermal conductivity and electron-phonon coupling factor are also calculated. The obtained analytical expressions can be used in two-temperature hydrodynamics modeling of Ru targets pumped by ultrashort laser pulses. The data is related to the research article "Similarity in ruthenium damage induced by photons with different energies: From visible light to hard X-rays" [1].

3.
Nanoscale ; 8(24): 12352-61, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27273005

RESUMO

Hollow reduced-symmetry resonant plasmonic nanostructures possess pronounced tunable optical resonances in the UV-vis-IR range, being a promising platform for advanced nanophotonic devices. However, the present fabrication approaches require several consecutive technological steps to produce such nanostructures, making their large-scale fabrication rather time-consuming and expensive. Here, we report on direct single-step fabrication of large-scale arrays of hollow parabolic- and cone-shaped nanovoids in silver and gold thin films, using single-pulse femtosecond nanoablation at high repetition rates. The lateral and vertical size of such nanovoids was found to be laser energy-tunable. Resonant light scattering from individual nanovoids was observed in the visible spectral range, using dark-field confocal microspectroscopy, with the size-dependent resonant peak positions. These colored geometric resonances in far-field scattering were related to excitation and interference of transverse surface plasmon modes in nanovoid shells. Plasmon-mediated electromagnetic field enhancement near the nanovoids was evaluated via finite-difference time-domain calculations for their model shapes simulated by three-dimensional molecular dynamics, and experimentally verified by means of photoluminescence microscopy and Raman spectroscopy.

4.
Philos Trans A Math Phys Eng Sci ; 368(1916): 1769-807, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20211883

RESUMO

A theoretical framework to study linear and nonlinear Richtmyer-Meshkov instability (RMI) is presented. This instability typically develops when an incident shock crosses a corrugated material interface separating two fluids with different thermodynamic properties. Because the contact surface is rippled, the transmitted and reflected wavefronts are also corrugated, and some circulation is generated at the material boundary. The velocity circulation is progressively modified by the sound wave field radiated by the wavefronts, and ripple growth at the contact surface reaches a constant asymptotic normal velocity when the shocks/rarefactions are distant enough. The instability growth is driven by two effects: an initial deposition of velocity circulation at the material interface by the corrugated shock fronts and its subsequent variation in time due to the sonic field of pressure perturbations radiated by the deformed shocks. First, an exact analytical model to determine the asymptotic linear growth rate is presented and its dependence on the governing parameters is briefly discussed. Instabilities referred to as RM-like, driven by localized non-uniform vorticity, also exist; they are either initially deposited or supplied by external sources. Ablative RMI and its stabilization mechanisms are discussed as an example. When the ripple amplitude increases and becomes comparable to the perturbation wavelength, the instability enters the nonlinear phase and the perturbation velocity starts to decrease. An analytical model to describe this second stage of instability evolution is presented within the limit of incompressible and irrotational fluids, based on the dynamics of the contact surface circulation. RMI in solids and liquids is also presented via molecular dynamics simulations for planar and cylindrical geometries, where we show the generation of vorticity even in viscid materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...