Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1380249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826800

RESUMO

Introduction: The incidence and mortality of female breast cancer remain high, and the immune microenvironment of breast cancer has undergone significant alterations. However, the impact of blood immune cell levels on the risk of breast cancer is not fully understood. Therefor this study aims to investigate the causal relationship between blood immune cell levels and the risk of breast cancer. Methods: A Mendelian randomization (MR) analysis was employed to assess the causal relationship between immune cells and the risk of breast cancer, as along with their potential mediating factors. Genetic statistics of metabolites breast cancer and immune cells were obtained from the GWAS Catalog, while the genome-wide association study (GWAS) statistics of breast cancer were extracted from the UK biobank. Two-sample MR analysis were performed using inverse-variance weighted (IVW) to ascertain the causal association between immune cells and the risk of breast cancer. Furthermore, 1,400 metabolites were analyzed for their mediating role between immune cells and the risk of breast cancer. Results: MR analysis through IVW method revealed that genetically predicted CD24+ CD27+ B cells were associated with a decreased risk of breast cancer (OR = 0.9978, 95% CI: 0.996-0.999, p = 0.001), while IgD- CD38+ B cells were linked to an increased risk of breast cancer (OR = 1.002, 95% CI: 1.001-1.004, p = 0.005). Additional CD14+ CD16+ monocytes were associated with an increased risk of breast cancer (OR = 1.000, 95% CI: 1.000-1.001, p = 0.005). Mediation analysis revealed a positive causal relationship between IgD- CD38+ B cells and Glycerate levels, with the latter also exhibiting a positive causal relationship with the risk of breast cancer (p < 0.05). Conversely, IgD- CD38+ B cells displayed a negative causal relationship with Succinoyltaurine levels, and the latter also demonstrated a negative causal relationship with the risk of breast cancer (p < 0.05). Conclusion: This MR study provides novel genetic evidence supporting a causal relationship between IgD- CD38+ B cells and the risk of BC. Moreover, it is identified that IgD- CD38+ B cells contribute to an increased risk of BC through both positive and negative mediation effects involving Glycerate and Succinoyltaurine.

2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 535-541, 2024 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-38752238

RESUMO

Objective: To evaluate the effectiveness of using titanium alloy trabecular bone three-dimensional (3D) printed artificial vertebral body in treating cervical ossification of the posterior longitudinal ligament (OPLL). Methods: A retrospective analysis was conducted on clinical data from 45 patients with cervical OPLL admitted between September 2019 and August 2021 and meeting the selection criteria. All patients underwent anterior cervical corpectomy and decompression, interbody bone graft fusion, and titanium plate internal fixation. During operation, 21 patients in the study group received titanium alloy trabecular bone 3D printed artificial vertebral bodies, while 24 patients in the control group received titanium cages. There was no significant difference in baseline data such as gender, age, disease duration, affected segments, or preoperative pain visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, Neck Disability Index (NDI), vertebral height, and C 2-7Cobb angle ( P>0.05). Operation time, intraoperative blood loss, and occurrence of complications were recorded for both groups. Preoperatively and at 3 and 12 months postoperatively, the functionality and symptom relief were assessed using JOA scores, VAS scores, and NDI evaluations. The vertebral height and C 2-7 Cobb angle were detected by imaging examinations and the implant subsidence and intervertebral fusion were observed. Results: The operation time and incidence of complications were significantly lower in the study group than in the control group ( P<0.05), while the difference in intraoperative blood loss between the two groups was not significant ( P>0.05). All patients were followed up 12-18 months, with the follow-up time of (14.28±4.34) months in the study group and (15.23±3.54) months in the control group, showing no significant difference ( t=0.809, P=0.423). The JOA score, VAS score, and NDI of the two groups improved after operation, and further improved at 12 months compared to 3 months, with significant differences ( P<0.05). At each time point, the study group exhibited significantly higher JOA scores and improvement rate compared to the control group ( P<0.05); but there was no significantly difference in VAS score and NDI between the two groups ( P>0.05). Imaging re-examination showed that the vertebral height and C 2-7Cobb angle of the two groups significantly increased at 3 and 12 months after operation ( P<0.05), and there was no significant difference between 3 and 12 months after operation ( P>0.05). At each time point, the vertebral height and C 2-7Cobb angle of the study group were significantly higher than those of the control group ( P<0.05), and the implant subsidence rate was significantly lower than that of the control group ( P<0.05). However, there was no significant difference in intervertebral fusion rate between the two groups ( P>0.05). Conclusion: Compared to traditional titanium cages, the use of titanium alloy trabecular bone 3D-printed artificial vertebral bodies for treating cervical OPLL results in shorter operative time, fewer postoperative complications, and lower implant subsidence rates, making it superior in vertebral reconstruction.


Assuntos
Ligas , Vértebras Cervicais , Ossificação do Ligamento Longitudinal Posterior , Impressão Tridimensional , Fusão Vertebral , Titânio , Humanos , Ossificação do Ligamento Longitudinal Posterior/cirurgia , Vértebras Cervicais/cirurgia , Estudos Retrospectivos , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Descompressão Cirúrgica/métodos , Osso Esponjoso , Resultado do Tratamento , Corpo Vertebral/cirurgia , Feminino , Masculino , Placas Ósseas , Pessoa de Meia-Idade
3.
Biomaterials ; 308: 122548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554642

RESUMO

The treatment of infected wounds poses a formidable challenge in clinical practice due to the detrimental effects of uncontrolled bacterial infection and excessive oxidative stress, resulting in prolonged inflammation and impaired wound healing. In this study, we presented a MXene@TiO2 (MT) nanosheets loaded composite hydrogel named as GA/OKGM/MT hydrogel, which was formed based on the Schiff base reaction between adipic dihydrazide modified gelatin (GA)and Oxidized Konjac Glucomannan (OKGM), as the wound dressing. During the hemostasis phase, the GA/OKGM/MT hydrogel demonstrated effective adherence to the skin, facilitating rapid hemostasis. In the subsequent inflammation phase, the GA/OKGM/MT hydrogel effectively eradicated bacteria through MXene@TiO2-induced photothermal therapy (PTT) and eliminated excessive reactive oxygen species (ROS), thereby facilitating the transition from the inflammation phase to the proliferation phase. During the proliferation phase, the combined application of GA/OKGM/MT hydrogel with electrical stimulation (ES) promoted fibroblast proliferation and migration, leading to accelerated collagen deposition and angiogenesis at the wound site. Overall, the comprehensive repair strategy based on the GA/OKGM/MT hydrogel demonstrated both safety and reliability. It expedited the progression through the hemostasis, inflammation, and proliferation phases of wound healing, showcasing significant potential for the treatment of infected wounds.


Assuntos
Proliferação de Células , Gelatina , Hemostasia , Hidrogéis , Mananas , Titânio , Cicatrização , Cicatrização/efeitos dos fármacos , Titânio/química , Hidrogéis/química , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Hemostasia/efeitos dos fármacos , Gelatina/química , Mananas/química , Masculino , Terapia Fototérmica , Nanoestruturas/química , Espécies Reativas de Oxigênio/metabolismo , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/terapia , Humanos
4.
Am J Chin Med ; 51(4): 1041-1066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120706

RESUMO

Metastasis of osteosarcoma is an important adverse factor affecting patients' survival, and cancer stemness is the crucial cause of distant metastasis. Capsaicin, the main component of pepper, has been proven in our previous work to inhibit osteosarcoma proliferation and enhance its drug sensitivity to cisplatin at low concentrations. This study aims to further explore the anti-osteosarcoma effect of capsaicin at low concentrations (100[Formula: see text][Formula: see text]M, 24[Formula: see text]h) on stemness and metastasis. The stemness of human osteosarcoma (HOS) cells was decreased significantly by capsaicin treatment. Additionally, the capsaicin treatment's inhibition of cancer stem cells (CSCs) was dose-dependent on both sphere formation and sphere size. Meanwhile, capsaicin inhibited invasion and migration, which might be associated with 25 metastasis-related genes. SOX2 and EZH2 were the most two relevant stemness factors for capsaicin's dose-dependent inhibition of osteosarcoma. The mRNAsi score of HOS stemness inhibited by capsaicin was strongly correlated with most metastasis-related genes of osteosarcoma. Capsaicin downregulated six metastasis-promoting genes and up-regulated three metastasis-inhibiting genes, which significantly affected the overall survival and/or disease-free survival of patients. In addition, the CSC re-adhesion scratch assay demonstrated that capsaicin inhibited the migration ability of osteosarcoma by inhibiting its stemness. Overall, capsaicin exerts a significant inhibitory effect on the stemness expression and metastatic ability of osteosarcoma. Moreover, it can inhibit the migratory ability of osteosarcoma by suppressing its stemness via downregulating SOX2 and EZH2. Therefore, capsaicin is expected to be a potential drug against osteosarcoma metastasis due to its ability to inhibit cancer stemness.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Capsaicina/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/farmacologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/farmacologia
5.
Sci Rep ; 12(1): 22496, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577753

RESUMO

Colorectal cancer (CRC) is among the most prominent causes of cancer-associated mortality in the world, with chemoresistance representing one of the leading causes of treatment failure. However, the mechanisms governing such chemoresistance remain incompletely understood. In this study, the role of DYRK2 as a mediator of CRC cell drug resistance and the associated molecular mechanisms were assessed by evaluating human tumor tissue samples, CRC cell lines, and animal model systems. Initial analyses of The Cancer Genome Atlas database and clinical tissue microarrays revealed significant DYRK2 downregulation in CRC in a manner correlated with poor prognosis. We further generated LoVo CRC cells that were resistant to the chemotherapeutic drug 5-FU, and found that such chemoresistance was associated with the downregulation of DYRK2 and a more aggressive mesenchymal phenotype. When DYRK2 was overexpressed in these cells, their proliferative, migratory, and invasive activities were reduced and they were more prone to apoptotic death. DYRK2 overexpression was also associated with enhanced chemosensitivity and the inhibition of epithelial-mesenchymal transition (EMT) induction in these LoVo 5-FUR cells. Co-immunoprecipitation assays revealed that DYRK2 bound to Twist and promoted its proteasomal degradation. In vivo studies further confirmed that the overexpression of DYRK2 inhibited human CRC xenograft tumor growth with concomitant Twist downregulation. Overall, these results thus highlight DYRK2 as a promising therapeutic target in CRC worthy of further investigation.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica
6.
Oxid Med Cell Longev ; 2022: 8966368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329803

RESUMO

Globally, osteosarcoma (OS) is the most prevalent form of primary bone cancer in children and adolescents. Traditional neoadjuvant chemotherapy regimens have reached a bottleneck; thus, OS survivors have unsatisfactory outcomes. Theaflavin-3,3'-digallate (TF3) exhibits potent anticancer properties against many human cancers. Nevertheless, the biological effects and the underlying molecular mechanism of TF3 in human OS remain unclear. The objective of this study was to investigate the effects of TF3 on human OS cell lines and mouse xenograft models. The results showed that TF3 reduced cell viability, suppressed cell proliferation, and caused G0/G1 cell cycle arrest in both MG63 and HOS cell lines in a concentration-dependent manner. TF3 also altered the homeostatic mechanisms for iron storage in the examined cell lines, resulting in an excess of labile iron. Unsurprisingly, TF3 caused oxidative stress through reduced glutathione (GSH) exhaustion, reactive oxygen species (ROS) accumulation, and the Fenton reaction, which triggered ferroptosis and apoptosis in the cells. TF3 also induced MAPK signalling pathways, including the ERK, JNK, and p38 MAPK pathways. Furthermore, oxidative stress was shown to be the primary reason for TF3-induced proliferation inhibition, programmed cell death, and MAPK pathway activation in vitro. Moreover, TF3 exhibited markedly strong antitumour efficacy in vivo in mouse models. In summary, this study demonstrates that TF3 concomitantly plays dual roles in apoptotic and ferroptotic cell death by triggering the ROS and MAPK signalling pathways in both in vitro and in vivo models.


Assuntos
Neoplasias Ósseas , Ferroptose , Osteossarcoma , Camundongos , Animais , Criança , Humanos , Adolescente , Espécies Reativas de Oxigênio/metabolismo , Xenoenxertos , Linhagem Celular Tumoral , Apoptose , Osteossarcoma/tratamento farmacológico , Proliferação de Células , Antioxidantes/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Ferro/farmacologia
7.
Cancer Sci ; 113(12): 4104-4119, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36047971

RESUMO

Osteosarcoma is the most prevalent form of primary bone malignancy affecting adolescents. Secretion-associated Ras-related GTPase 1A (SAR1A) is a key regulator of endoplasmic reticulum (ER) homeostasis, but its role as a regulator of osteosarcoma metastasis has yet to be clarified. Bioinformatics analyses revealed SAR1A and RHOA to be upregulated in osteosarcoma patients, with the upregulation of these genes being associated with poor 5-year metastasis-free survival rates. In addition, the upregulation of SAR1A and RHOA in osteosarcoma was highly positively correlated. Immunohistochemical analyses additionally revealed that SAR1A levels were increased in osteosarcoma pulmonary metastases. In vitro wound healing and Transwell assays indicated that knocking down SAR1A or RHOA impaired the invasive and migratory activity of osteosarcoma cells, whereas RHOA overexpression had the opposite effect. Western blotting and immunofluorescent staining revealed the inhibition of osteosarcoma cell epithelial-mesenchymal transition following SAR1A or RHOA knockdown; RHOA overexpression had the opposite effect. Following SAR1A knockdown, phalloidin staining indicated that osteosarcoma cells showed reduced lamellipodia formation. Endoplasmic reticulum stress levels and reactive oxygen species production were enhanced following the knockdown of SAR1A, as was autophagic activity, with lung metastases being reduced in vivo after such knockdown. Knocking down SAR1A suppresses osteosarcoma cell metastasis through the RhoA/YAP, ER stress, and autophagic pathways, offering new insights into the regulation of autophagic activity in the context of osteosarcoma cell metastasis and suggesting that these pathways could be amenable to therapeutic intervention.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Proteínas Monoméricas de Ligação ao GTP , Osteossarcoma , Adolescente , Humanos , Proteínas ras/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Osteossarcoma/patologia , Neoplasias Ósseas/patologia , Autofagia/genética , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Movimento Celular/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo
8.
Front Physiol ; 13: 926508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874515

RESUMO

Purpose: Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease that often results in high mortality due to sudden rupture. This paper aims to explore potential molecular mechanisms and effective targeted therapies to prevent and delay AAA rupture. Methods: We downloaded two microarray datasets (GSE98278 and GSE17901) from the Gene Expression Omnibus (GEO) database. Differential analysis and single-sample gene set enrichment analysis (ssGSEA) of hypoxia scores were performed on 48 AAA patients in GSE98278. We identified hypoxia- and ruptured AAA-related gene modules using weighted gene coexpression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the R package clusterProfiler. For candidate genes, validation was conducted on the mouse dataset GSE17901. Finally, we predicted drug candidates associated with the hub genes using the HERB Chinese medicine database. Results: Eighty-two differentially expressed genes were screened in the ruptured and stable groups; 103 differentially expressed genes were identified between the high- and low-hypoxia groups; and WGCNA identified 58 differentially expressed genes. Finally, nine candidate genes were screened, including two hub genes (MEDAG and SERPINE1). We identified pathways such as cytokine-cytokine receptor interaction and T-helper 1-type immune response involved in AAA hypoxia and rupture. We predicted 93 traditional Chinese medicines (TCMs) associated with MEDAG and SERPINE1. Conclusion: We identified the hypoxic molecules MEDAG and SERPINE1 associated with AAA rupture. Our study provides an additional direction for the association between hypoxia and AAA rupture.

10.
Photodiagnosis Photodyn Ther ; 39: 102964, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35705143

RESUMO

BACKGROUND AND AIMS: This study was designed to explore the effects of Yes-associated protein (YAP) knockdown on human osteosarcoma (HOS) cell sensitivity to Pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT), and to assess how YAP silencing in combination with treatment with the ferroptosis inducer Erastin improves HOS cell sensitivity to MPPa-PDT in an effort to better clarify the molecular mechanisms underlying these phenotypes. METHODS: At 12 h post-MPPa-PDT, Hoechst staining and flow cytometry were conducted to evaluate the apoptotic death of HOS cells. The expression of YAP in these cells at 12 h post-MPPa-PDT treatment was assessed via Western blotting and immunofluorescent staining. BODIPY581/591-C11 was used to evaluate lipid peroxidation. Following shYAP lentiviral transduction, Western blotting was conducted to assess the expression of proteins associated with proliferation, apoptosis, and ferroptosis. EdU assays and clonogenic assays were performed to analyze cellular proliferation. Erastin-treated HOS cells were used to establish a ferroptosis model. Western blotting was used to measure ferroptosis-associated protein levels following shYAP and erastin treatment, while changes in proliferation and MDA levels in each group were examined using an MDA kit. RESULTS: At 12 h post-MPPa-PDT, HOS cells exhibited apoptotic characteristics including nuclear fragmentation and pyknosis, with concomitant increases in apoptosis-associated proteins as detected via Western blotting and apoptotic induction as measured via flow cytometry. Phosphorylated YAP levels fell and non-phosphorylated YAP levels rose following such treatment. Transfection with shYAP was successful as a means of generating stable HOS cell lines, and Western blotting analyses of these cells revealed reductions in proteins associated with cellular proliferation together with the upregulation of apoptosis-related proteins.  MDA assays indicated that erastin combined with YAP knockdown enhanced the sensitivity of HOS cells to MPPa-PDT treatment. CONCLUSIONS: These data indicate that ferroptosis and YAP knockdown can enhance osteosarcoma cell sensitivity to MPPa-PDT therapy.


Assuntos
Neoplasias Ósseas , Ferroptose , Osteossarcoma , Fotoquimioterapia , Porfirinas , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Ésteres , Humanos , Osteossarcoma/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia
11.
J Nanobiotechnology ; 20(1): 83, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177075

RESUMO

BACKGROUND: No prominent advancements in osteosarcoma (OS) treatment have been made in the past 20 years. Although photodynamic therapy (PDT) is an emerging technique for cancer therapy, the lack of targeted photosensitizers for OS treatment severely limits its applications. RESULTS: In this study, we constructed a potential theranostic nanoplatform by using (poly (lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) encapsulating IR780 into the shell (PLGA-IR780 NPs), which were further camouflaged with human OS cell membranes from the HOS cell line (MH-PLGA-IR780 NPs). These constructed NPs showed the capacity for homologous targeting with excellent photoacoustic (PA)/fluorescence (FL) imaging ability. Benefitting from their homologous targeting capacity, MH-PLGA-IR780 NPs obviously promoted cell endocytosis in vitro and tumor accumulation in vivo, which could further improve PDT performance under near-infrared (NIR) irradiation. In addition, to their homologous targeting and PA/FL dual-mode imaging ability, MH-PLGA-IR780 NPs had advantages in penetrating deeper into tumor tissues and in real-time dynamic distribution monitoring in vivo, which laid a foundation for further clinical applications in OS. Moreover, we demonstrated that PDT guided by the constructed NPs could significantly induce HOS cells apoptosis and ferroptosis via excessive accumulation of reactive oxygen species (ROS), and further determined that the potential anticancer molecular mechanism of apoptosis was triggered by the release of cytochrome c-activated mitochondrial apoptosis (endogenous apoptosis), and that ferroptosis caused the activation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and the inactivation of glutathione peroxidase 4 (GPX4), synergistically leading to excessive accumulation of Lipid-ROS and Lipid peroxides (LPOs). Concurrently, MH-PLGA-IR780 NPs-guided PDT also showed an obvious inhibitory effect on tumor growth in vivo. CONCLUSION: These results suggest that this homologous targeting-based theranostic nanoplatform provides an effective method to improve PDT performance in OS and contributes a new and promising approach for OS therapy.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Fotoquimioterapia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Nanopartículas/metabolismo , Osteossarcoma/tratamento farmacológico , Fotoquimioterapia/métodos
12.
Photodiagnosis Photodyn Ther ; 37: 102646, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34818599

RESUMO

Photodynamic therapy (PDT), utilizes a photochemical reaction between photosensitizer and light to cause cancer death by generating reactive oxygen species (ROS). X-box binding protein 1 (XBP1), a downstream product of the IRE1α-XBP1 pathway, regulates diverse target genes, including various proto-oncogenes and its overexpression was closely related to the occurrence and progression of malignant tumors. The present study was performed to explore the role of XBP1 in human osteosarcoma HOS cells treated with pyropheophorbide-α methyl ester (MPPα)-mediated photodynamic therapy (PDT) (MPPα-PDT) and its potential mechanisms. The protein IRE1α and XBP1 increased with a time-dependent manner after MPPα-PDT treated, which indicated that MPPα-PDT induced the activation of the IRE1α-XBP1 pathway in HOS cells. Besides, MPPα-PDT treated alone or combined with XBP1 knockdown could both restrain the cell viability, but the latter one has more notable effect, which indicated that XBP1 knockdown may enhance the cell inhibitory effect by MPPα-PDT. Simultaneously, the apoptotic rate measured by flow cytometry (FCM) was increased surprisedly and the expression of apoptosis proteins was increased when knockdown XBP1 under the MPPα-PDT. In addition, antioxidant-related proteins such as the Catalase and SOD1 protein levels decreased, while the intracellular ROS content increased in HOS cells when knockdown XBP1 under the MPPα-PDT. These results suggested that the mechanism of XBP1 mediating resistance in HOS cells might be related to the expression of antioxidant molecules. In summary, this study found that the IRE1α-XBP1 pathway was activated in HOS cells after MPPα-PDT treated, and furthermore, XBP1 knockdown could decrease HOS cell viability through apoptosis and enhance the anti-tumor effect of MPPα-PDT remarkably in the meantime, which related to the regulation of oxidation-antioxidant system.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Fotoquimioterapia , Apoptose , Linhagem Celular Tumoral , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Ésteres , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Fotoquimioterapia/métodos , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Ligação a X-Box/farmacologia
13.
Cell Biosci ; 11(1): 179, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627383

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most prevalent primary bone malignancy affecting adolescents, yet the emergence of chemoradiotherapeutic resistance has limited efforts to cure affected patients to date. Pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT) is a recently developed, minimally invasive treatment for OS that is similarly constrained by such therapeutic resistance. This study sought to explore the mechanistic basis for RhoA-activated YAP1 (YAP)-mediated resistance in OS. METHODS: The relationship between YAP expression levels and patient prognosis was analyzed, and YAP levels in OS cell lines were quantified. Immunofluorescent staining was used to assess YAP nuclear translocation. OS cell lines (HOS and MG63) in which RhoA and YAP were knocked down or overexpressed were generated using lentiviral vectors. CCK-8 assays were used to examine OS cell viability, while the apoptotic death of these cells was monitored via Hoechst staining, Western blotting, and flow cytometry. Tumor-bearing nude mice were additionally used to assess the relationship between lentivirus-mediated alterations in RhoA expression and MPPa-PDT treatment outcomes. TUNEL and immunohistochemical staining approaches were leveraged to assess apoptotic cell death in tissue samples. RESULTS: OS patients exhibited higher levels of YAP expression, and these were correlated with a poor prognosis. MPPa-PDT induced apoptosis in OS cells, and such MPPa-PDT-induced apoptosis was enhanced following YAP knockdown whereas it was suppressed by YAP overexpression. RhoA and YAP expression levels were positively correlated in OS patients, and both active and total RhoA protein levels rose in OS cells following MPPa-PDT treatment. When RhoA was knocked down, levels of unphosphorylated YAP and downstream target genes were significantly reduced, while RhoA/ROCK2/LIMK2 pathway phosphorylation was suppressed, whereas RhoA overexpression resulted in the opposite phenotype. MPPa-PDT treatment was linked to an increase in HMGCR protein levels, and the inhibition of RhoA or HMGCR was sufficient to suppress RhoA activity and to decrease the protein levels of YAP and its downstream targets. Mevalonate administration partially reversed these reductions in the expression of YAP and YAP target genes. RhoA knockdown significantly enhanced the apoptotic death of OS cells in vitro and in vivo following MPPa-PDT treatment, whereas RhoA overexpression had the opposite effect. CONCLUSIONS: These results suggest that the mevalonate pathway activates RhoA, which in turn activates YAP and promotes OS cell resistance to MPPa-PDT therapy. Targeting the RhoA/ROCK2/LIMK2/YAP pathway can significantly improve the efficacy of MPPa-PDT treatment for OS.

14.
Acta Biochim Biophys Sin (Shanghai) ; 53(10): 1387-1397, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34494093

RESUMO

Photodynamic therapy (PDT), which is a new method for treating tumors, has been used in the treatment of cancer. In-depth research has shown that PDT cannot completely kill tumor cells, indicating that tumor cells are resistant to PDT. Glucose regulatory protein 78 (GRP78), which is a key regulator of endoplasmic reticulum stress, has been confirmed to be related to tumor resistance and recurrence, but there are relatively few studies on the further mechanism of GRP78 in PDT. Our experiment aimed to observe the role of GRP78 in HOS human osteosarcoma cells treated with pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPα-PDT) and to explore the possible mechanism by which the silencing of GRP78 expression enhances the sensitivity of HOS osteosarcoma cells to MPPα-PDT. HOS osteosarcoma cells were transfected with siRNA-GRP78. Apoptosis and reactive oxygen species (ROS) levels were detected by Hoechst staining and flow cytometry, cell viability was detected by Cell Counting Kit-8 assay, GRP78 protein fluorescence intensity was detected by immunofluorescence, and apoptosis-related proteins, cell proliferation-related proteins, and Wnt pathway-related proteins were detected by western blot. The results showed that MPPα-PDT can induce HOS cell apoptosis and increase GRP78 expression. After successful siRNA-GRP78 transfection, HOS cell proliferation was decreased, and apoptosis-related proteins expressions was increased, Wnt/ß-catenin-related proteins expressions was decreased, and ROS levels was increased. In summary, siRNA-GRP78 enhances the sensitivity of HOS cells to MPPα-PDT, the mechanism may be related to inhibiting Wnt pathway activation and increasing ROS levels.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/terapia , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Via de Sinalização Wnt/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Chaperona BiP do Retículo Endoplasmático/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
15.
Front Mol Biosci ; 7: 576298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381518

RESUMO

Metastasis of osteosarcoma (OS) is an essential factor affecting the prognosis and survival of patients. The tumor microenvironment, including tumor immune-infiltrating cells (TIIC), is closely related to tumor progression. The purpose of this study was to investigate the differences between metastatic and non-metastatic immune-infiltrating cells in OS and to identify key immune-related genes. The differences in immune infiltration in OS metastasis were calculated based on the ssGSEA algorithm of 28 immuno-infiltrating cells. Weighted gene co-expression network analysis (WGCNA) and intersection analysis were used to screen immune-related modules and hubgenes. Univariate/multivariate/Lasso Cox regressions were used for models construction and signatures screening. The receiver operating characteristic (ROC) and Kaplan-Meier (K-M) curves were constructed to observe the metastases of different groups. Both internal and external data were verified. We found that macrophages and Type-2 T-helper cells were significantly decreased in patients with OS metastases. The high-risk groups obtained from multivariate/Lasso Cox models constructed with 11 immune-related hubgenes almost all underwent distant metastases within 5 years. Interestingly and importantly, two genes, MSR1 and TLR7, appeared in various models and various hubgenes, which play an anti-metastasis role and may prolong overall survival in OS. Our study may help elucidate the impact of TIIC on OS metastasis outcomes and to identify biomarkers and therapeutic targets.

16.
Zhongguo Gu Shang ; 30(5): 475-478, 2017 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-29417782

RESUMO

OBJECTIVE: To evaluate the clinical effects of posterior debridement, interbody fusion with internal fixation in the treatment of lumbar discitis. METHODS: The clinical data of 13 patients with lumbar discitis treated from January 2005 to June 2012 was retrospectively analyzed. There were 9 males and 4 females, aged from 31 to 68 years old with an average of 56 years old. There were 2 cases on L3, 4, 4 cases on L4, 5, and 7 cases on L5S1. Two cases complicated with diabetes, 4 cases with hypertension, and 1 case with obsolete pulmonary tuberculosis. ESR level of 13 cases was 12-89 mm/h with an average of 42 mm/h; and C reactive protein fluctuations level was level 8-114 ng/L with an average of 47 ng/L. All the patients denied history of operation or injection, and the main symptom was severe pain and limitation of motion in lumbar, with no efficacy for conservative methods. Preoperative VAS was from 5 to 10 points with an average of 7.8 points. All patients were treated with posterior debridement, interbody fusion, and internal fixation. RESULTS: All the patients left hospital after wound healing, and the effective antibiotics were continuously used for 4 weeks intravenously and 2 weeks for orally. All patients were followed up from 7 to 24 months with an average of 18 months. VAS decreased for 0-1 point. No internal fixation breakage, and recurrence were found. Bone graft got fusion, and postoperative pathology showed phlogistic changes. CONCLUSIONS: One-stage posterior debridement, interbody fusion with internal fixation was an effective method in treating lumbar discitis, and it lead to quicker relived pain relief and earlier mobilization.


Assuntos
Desbridamento/métodos , Discite/cirurgia , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Adulto , Idoso , Discite/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...