Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Control Release ; 353: 229-240, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427657

RESUMO

Surface PEGylation of nanomedicine is effective for prolonging blood circulation time and facilitating the EPR effect, whereas the hydrophilic stealth surface inhibits effective cellular uptake and hinders active targeting. To address the dilemma, herein, a NIR light-triggered dePEGylation/ligand-presenting strategy based on thermal decomposition of azo bonds is developed, whereby Dox/Pz-IR nanoparticle is self-assembled from thermo-labile azo molecule-linked long PEG chain polymer (Pz-IR), cRGD-conjugated IR783 with short PEG chains (rP-IR) and doxorubicin. The long PEG chains could mask cRGD peptides in the blood circulation, preventing serum degradation and nonspecific interaction with normal cells. Once exposed to NIR laser, the PEG corona is stripped off owing to the rupture of azo bonds through the photothermal effect of IR783, and the masked cRGD peptides are exposed, which remarkably enhances cellular uptake by tumor cells and improves tumor accumulation. Dox/Pz-IR achieves the optimal synergy of photothermal-chemotherapy at mild temperature through progressive tumor accumulation, precisely regulated photothermal effect and NIR-PTT induced pulsated drug release. The strategy of NIR photo-driven dePEGylation/targeting offers a new approach to overcoming the "PEG dilemma", and provides a noval avenue for programmed tumor-targeted drug delivery.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Ligantes , Sistemas de Liberação de Medicamentos , Doxorrubicina/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Fototerapia
2.
Nat Commun ; 13(1): 2794, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589680

RESUMO

Insufficient tumor accumulation and distribution of photosensitizers as well as low antitumor immunity severely restrict the therapeutic efficacy of photothermal therapy (PTT). Cancer-associated fibroblasts (CAFs) play a key role in tumor extracellular matrix (ECM) remodeling and immune evasion. Reshaping tumor microenvironment via CAF regulation might provide a potential approach for complete tumor elimination in combination with PTT. Here, tumor cell-derived microparticles co-delivering calcipotriol and Indocyanine green (Cal/ICG@MPs) are developed to modulate CAFs for improved PTT efficacy. Cal/ICG@MPs efficiently target tumor tissues and regulate CAFs to reduce tumor ECM, resulting in enhanced tumor accumulation and penetration of ICG to generate strong PTT efficacy and activate CD8+ T cell-mediated antitumor immunity. In addition, Cal/ICG@MPs-triggered CAF regulation enhances tumor infiltration of CD8+ T cells and ameliorates CAF-induced antigen-mediated activation-induced cell death of tumor-specific CD8+ T cells in response to PTT, eliciting long-term antitumor immune memory to inhibit tumor recurrence and metastasis. Our results support Cal/ICG@MPs as a promising drug to improve PTT efficacy in cancer treatment.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Verde de Indocianina/farmacologia , Neoplasias/terapia , Terapia Fototérmica , Recidiva
3.
Nat Commun ; 12(1): 440, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469052

RESUMO

The main challenges for programmed cell death 1(PD-1)/PD-1 ligand (PD-L1) checkpoint blockade lie in a lack of sufficient T cell infiltration, tumor immunosuppressive microenvironment, and the inadequate tumor accumulation and penetration of anti-PD-1/PD-L1 antibody. Resetting tumor-associated macrophages (TAMs) is a promising strategy to enhance T-cell antitumor immunity and ameliorate tumor immunosuppression. Here, mannose-modified macrophage-derived microparticles (Man-MPs) loading metformin (Met@Man-MPs) are developed to efficiently target to M2-like TAMs to repolarize into M1-like phenotype. Met@Man-MPs-reset TAMs remodel the tumor immune microenvironment by increasing the recruitment of CD8+ T cells into tumor tissues and decreasing immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells. More importantly, the collagen-degrading capacity of Man-MPs contributes to the infiltration of CD8+ T cells into tumor interiors and enhances tumor accumulation and penetration of anti-PD-1 antibody. These unique features of Met@Man-MPs contribute to boost anti-PD-1 antibody therapy, improving anticancer efficacy and long-term memory immunity after combination treatment. Our results support Met@Man-MPs as a potential drug to improve tumor resistance to anti-PD-1 therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Micropartículas Derivadas de Células/imunologia , Portadores de Fármacos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Memória Imunológica , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Células RAW 264.7 , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Theranostics ; 11(4): 1937-1952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408790

RESUMO

Development of efficient therapeutic strategy to incorporate ultrasound (US)-triggered sonodynamic therapy (SDT) and ferroptosis is highly promising in cancer therapy. However, the SDT efficacy is severely limited by the hypoxia and high glutathione (GSH) in the tumor microenvironment, and ferroptosis is highly associated with reactive oxygen species (ROS) and GSH depletion. Methods: A manganese porphyrin-based metal-organic framework (Mn-MOF) was constructed as a nanosensitizer to self-supply oxygen (O2) and decrease GSH for enhanced SDT and ferroptosis. In vitro and in vivo analysis, including characterization, O2 generation, GSH depletion, ROS generation, lipid peroxidation, antitumor efficacy and tumor immune microenvironment were systematically evaluated. Results: Mn-MOF exhibited catalase-like and GSH decreasing activity in vitro. After efficient internalization into cancer cells, Mn-MOF persistently catalyzed tumor-overexpressed H2O2 to in-situ produce O2 to relieve tumor hypoxia and decrease GSH and GPX4, which facilitated the formation of ROS and ferroptosis to kill cancer cells upon US irradiation in hypoxic tumors. Thus, strong anticancer and anti-metastatic activity was found in H22 and 4T1 tumor-bearing mice after a single administration of Mn-MOF upon a single US irradiation. In addition, Mn-MOF showed strong antitumor immunity and improved immunosuppressive microenvironment upon US irradiation by increasing the numbers of activated CD8+ T cells and matured dendritic cells and decreaing the numbers of myeloid-derived suppressor cells in tumor tissues. Conclusions: Mn-MOF holds great potential for hypoxic cancer therapy.


Assuntos
Carcinoma Hepatocelular/terapia , Ferroptose , Manganês/química , Estruturas Metalorgânicas/farmacologia , Porfirinas/química , Hipóxia Tumoral , Terapia por Ultrassom/métodos , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Glutationa/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Estruturas Metalorgânicas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
ACS Appl Mater Interfaces ; 12(7): 7995-8005, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32013384

RESUMO

The combination of photothermal therapy (PTT) with chemotherapy has great potential to maximize the synergistic effect of thermo-induced chemosensitization and improve treatment performance. To achieve high drug-loading capacity as well as precise synchronization between the controllable release of chemotherapeutics and the duration of near-infrared PTT, in this work, a facile one-step method was first developed to fabricate a novel injectable in situ forming photothermal modulated hydrogel drug delivery platform (D-PPy@PNAs), in which a PNIPAM-based temperature-sensitive acidic triblock polymer [poly(acrylic acid-b-N-isopropylamide-b-acrylic acid (PNA)] was utilized as the stabilizing agent in the polymerization of polypyrrole (PPy). The in situ forming hydrogels showed a sensitive temperature-responsive sol-gel phase-transition behavior, as well as an excellent photothermal property. The strong interaction of ionic bonds together with π-π stacking interactions resulted in high doxorubicin (DOX) loading capacity and controlled/sustained drug release behavior. In addition, D-PPy@PNAs also displayed enhanced cellular uptake and promoted intratumoral penetration of DOX upon NIR laser irradiation. The synergistic photothermal therapy-chemotherapy of D-PPy@PNA hydrogels greatly improved the antitumor efficacy in vivo. Therefore, thermosensitive polypyrrole-based D-PPy@PNA hydrogels may be powerful drug delivery nanoplatforms for precisely synergistic photothermo-chemotherapy of tumors.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Hipertermia Induzida/métodos , Nanogéis/química , Neoplasias Experimentais/terapia , Polímeros/química , Pirróis/química , Resinas Acrílicas/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada/métodos , Preparações de Ação Retardada , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos/efeitos da radiação , Humanos , Hidrogéis/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Células NIH 3T3 , Nanogéis/efeitos da radiação , Nanogéis/ultraestrutura , Neoplasias Experimentais/tratamento farmacológico , Transição de Fase , Fototerapia/métodos , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nano Lett ; 19(11): 8234-8244, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31576757

RESUMO

Photosensitizers (PSs) that are directly responsive to X-ray for radiodynamic therapy (RDT) with desirable imaging abilities have great potential applications in cancer therapy. Herein, the cerium (Ce)-doped NaCeF4:Gd,Tb scintillating nanoparticle (ScNP or scintillator) is first reported. Due to the sensitization effect of the Ce ions, Tb ions can emit fluorescence under X-ray irradiation to trigger X-ray excited fluorescence (XEF). Moreover, Ce and Tb ions can absorb the energy of secondary electrons generated by X-ray to produce reactive oxide species (ROS) for RDT. With the intrinsic absorption of X-ray by lanthanide elements, the NaCeF4:Gd,Tb ScNPs also act as a computed tomography (CT) imaging contrast agent and radiosensitizers for radiotherapy (RT) sensitization synchronously. Most importantly, the transverse relaxation time of Gd3+ ions is shortened due to the doping of Ce and Tb ions, leading to the excellent performance of our ScNPs in T2-weighted MR imaging for the first time. Both in vitro and in vivo studies verify that our synthesized ScNPs have good performance in XEF, CT, and T2-weighted MR imaging, and a synchronous RT/RDT is achieved with significant suppression on tumor progression under X-ray irradiation. Importantly, no systemic toxicity is observed after intravenous injection of ScNPs. Our work highlights that ScNPs have potential in multimodal imaging-guided RT/RDT of deep tumors.


Assuntos
Elementos da Série dos Lantanídeos/uso terapêutico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Nanopartículas/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Células A549 , Animais , Cério/uso terapêutico , Meios de Contraste/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Imagem Óptica , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Tomografia Computadorizada por Raios X , Terapia por Raios X
7.
ACS Nano ; 13(6): 6647-6661, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31083971

RESUMO

Highly efficient nanoarchitectures are of great interest for achieving precise chemotherapy with minimized adverse side effects in cancer therapy. However, a major challenge remains in exploring a rational approach to synthesize spatiotemporally selective vehicles for precise cancer chemotherapy. Here, we demonstrate a rational design of bifunctional light-activatable platinum nanocomplexes (PtNCs) that produce dually cooperative cancer therapy through spatiotemporally selective thermo-chemotherapy. The Pt4+-coordinated polycarboxylic nanogel is explored as the nanoreactor template, which is exploited to synthesize bifunctional PtNCs consisting of a zero-valent Pt0 core and a surrounding bivalent Pt2+ shell with tunable ratios through a facile and controllable reduction. Without light exposure, chemotherapeutic Pt2+ ions are tightly bound on the surface of PtNCs, efficiently reducing undesirable drug leakage and nonselective damage on normal tissues/cells. Upon light exposure, PtNCs generate much heat via photothermal conversion from the Pt0 core and simultaneously trigger a rapid release of chemotherapeutic Pt2+ ions, thereby leading to the spatiotemporally light-activatable synergistic effect of thermo-chemotherapy. Moreover, PtNCs show enhanced tumor accumulation through the heat-triggered hydrophilicity-hydrophobicity transition upon immediate light exposure after injection, dramatically facilitating in vivo tumor regression through their cooperative anticancer efficiency. This rational design of spatiotemporally activatable nanoparticles provides an insightful tool for precise cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Liberação Controlada de Fármacos , Nanoconjugados/química , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia/métodos , Platina/administração & dosagem , Células 3T3 , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Células Hep G2 , Humanos , Luz , Camundongos , Camundongos Endogâmicos BALB C , Nanoconjugados/efeitos da radiação , Platina/farmacocinética , Platina/uso terapêutico , Distribuição Tecidual
8.
Int J Nanomedicine ; 13: 1029-1040, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497295

RESUMO

BACKGROUND: Nanotechnology-based drug delivery systems exhibit promising therapeutic efficacy in cancer chemotherapy. However, ideal nano drug carriers are supposed to be sufficiently internalized into cancer cells and then release therapeutic cargoes in response to certain intracellular stimuli, which has never been an easy task to achieve. OBJECTIVE: This study is to design mesoporous silica nanoparticles (MSNs)-based pH-responsive nano drug delivery system that is effectively internalized into cancer cells and then release drug in response to lysosomal/endosomal acidified environment. METHODS: We synthesized MSNs by sol-gel method. Doxorubicin (DOX) was encapsulated into the pores as a model drug. Polyaspartic acid (PAsA) was anchored on the surface of mesoporous MSNs (P-MSNs) as a gatekeeper via amide linkage and endowed MSNs with positive charge. RESULTS: In vitro release analysis demonstrated enhanced DOX release from DOX-loaded PAsA-anchored MSNs (DOX@P-MSNs) under endosomal/lysosomal acidic pH condition. Moreover, more DOX@P-MSNs were internalized into HepG2 cells than DOX-loaded MSNs (DOX@MSNs) and free DOX revealed by flow cytometry. Likewise, confocal microscopic images revealed that DOX@P-MSNs effectively released DOX and translocated to the nucleus. Much stronger cytotoxicity of DOX@P-MSNs against HepG2 cells was observed compared with DOX@MSNs and free DOX. CONCLUSION: DOX@P-MSNs were successfully fabricated and achieved pH-responsive DOX release. We anticipated this nanotherapeutics might be suitable contenders for future in vivo cancer chemotherapeutic applications.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Peptídeos/química , Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Endossomos/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/administração & dosagem , Porosidade , Dióxido de Silício
9.
J Mater Chem B ; 6(36): 5768-5774, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254983

RESUMO

Layered double hydroxides (LDHs) have attracted particular attention as drug delivery carriers due to their variable chemical composition, excellent biocompatibility, high anion exchange capacity and controlled drug release. However, their anion exchange capability only meets the requirement for encapsulating drugs with negative charge in aqueous media. Encapsulation of drugs with positive charge into LDHs still remains a big challenge. Herein, we report a facile strategy to obtain highly dispersible doxorubicin-loaded MgAl-LDH nanohybrids (DOX@MgAl-LDH). DOX@MgAl-LDH is stable under physiological conditions and releases DOX in response to an acidic tumor microenvironment. Intracellular tracking of DOX@MgAl-LDH confirms that after internalization into cancer cells via macropinocytosis, clathrin- and lipid raft/caveolae-mediated endocytosis, DOX@MgAl-LDH is transported to lysosomes and then releases DOX to the nucleus. Furthermore, DOX@MgAl-LDH exhibits good tumor targeting, enhanced cellular uptake and cytotoxicity against cancer cells compared with free DOX. In vivo anticancer experiments reveal that DOX@MgAl-LDH significantly inhibits tumor growth with decreased DOX-induced cardiotoxicity compared with free DOX. This study may provide a new approach for highly efficient DOX delivery in cancer therapy.

10.
Genome Announc ; 5(11)2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28302787

RESUMO

Endophytic Herbaspirillum sp. strain WT00C was isolated from tea plant (Camellia sinensis L.). Here, we report the 6.08 Mb draft genome sequence of this strain, providing bioinformation about its agronomic benefits and capability to reduce selenate/selenite into red elemental selenium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...