Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 18(5): 1502-11, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22213333

RESUMO

Four new solution-processible small-molecular platinum(II)-bis(aryleneethynylene) complexes consisting of benzothiadiazole as the electron acceptor and triphenylamine and/or thiophene as the electron donor were conveniently synthesized and characterized by physicochemical and computational methods, and utilized as the electron-donor materials in the fabrication of solution-processed bulk heterojunction (BHJ) solar cells. The effect of different electron-donor groups in these small molecules on the optoelectronic and photovoltaic properties was also examined. The optical and time-dependent density functional theory studies showed that the incorporation of stronger electron-donor groups significantly enhanced the solar-absorption abilities of the complexes. These molecular complexes can serve as good electron donors for fabricating BHJ devices by blending them with the [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(70)BM) as the electron acceptor. The best power conversion efficiency of 2.37% was achieved with the open-circuit voltage of 0.83 V, short-circuit current density of 7.10 mA cm(-2) and fill factor of 0.40 under illumination of an AM 1.5 solar-cell simulator. The spin-coated thin films showed p-channel field-effect charge transport with hole mobilities of up to 2.4×10(-4) cm(2) V(-1) s(-1) for these molecules. The present work illuminates the potential of well-defined organometallic complexes in developing light-harvesting small molecules for efficient power generation in organic photovoltaics implementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...