Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 89: 242-249, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927708

RESUMO

Asciminib, a highly selective non-ATP competitive inhibitor of BCR-ABL, has demonstrated to be a promising drug for patients with chronic myeloid leukemia. It is a pity that two resistant mutations (I502L and V468F) have been found during the clinical trial, which is a challenge for the curative effect of Asciminib. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GB/SA) calculations were performed to investigate the molecular mechanism of Asciminib resistance induced by the two mutants. The obtained results indicate that the mutations have adversely influence on the binding of Asciminib to BCR-ABL, as the nonpolar contributions decline in the two mutants. In addition, I502L mutation causes α-helix I' (αI') to shift away from the helical bundle composed of αE, αF, and αH, making the distance between αI' and Asciminib increased. For V468F mutant, the side chain of Phe468 occupies the bottom of the myristoyl pocket (MP), which drives Asciminib to shift toward the outside of MP. Our results provide the molecular insights of Asciminib resistance mechanism in BCR-ABL mutants, which may help the design of novel inhibitors.


Assuntos
Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Mutação , Niacinamida/análogos & derivados , Inibidores de Proteínas Quinases/química , Pirazóis/química , Substituição de Aminoácidos , Antineoplásicos/farmacologia , Sítios de Ligação , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Niacinamida/química , Niacinamida/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Relação Quantitativa Estrutura-Atividade
2.
J Biomol Struct Dyn ; 37(7): 1724-1735, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29671687

RESUMO

Aldose reductase (AKR1B1) has been considered as a significant target for designing drugs to counteract the development of diabetic complications. In the present study, molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MM-GB/SA) calculations were performed to make sure which tautomer is the preferred one among three tautomeric forms (Mtia1, Mtia2, and Mtia3) of 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (Mtia) for binding to AKR1B1. The overall structural features and the results of calculated binding free energies indicate that Mtia1 and Mtia2 have more superiority than Mtia3 in terms of binding to AKR1B1. Furtherly, the local active site conformational characteristics and non-covalent interaction analysis were identified. The results indicate that the combination of Mtia2 and AKR1B1 is more stable than that of Mtia1. Furthermore, two extra hydrogen bonds between AKR1B1 and Mtia2 are found with respect to Mtia1. In addition, Mtia2 makes slightly stronger electrostatic interaction with the positively charged nicotinamide group of NADP+ than Mtia1. Based on the results above, Mtia2 is the preferred tautomeric form among the three tautomers. Our study can provide an insight into the details of the interaction between AKR1B1 and Mtia at the atomic level, and will be helpful for the further design of AKR1B1 inhibitors.


Assuntos
Aldeído Redutase/química , Inibidores Enzimáticos/química , Ácidos Indolacéticos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Aldeído Redutase/antagonistas & inibidores , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Ligação de Hidrogênio , Ácidos Indolacéticos/farmacologia , Estrutura Molecular , Ligação Proteica , Eletricidade Estática
3.
J Biomol Struct Dyn ; 34(11): 2351-66, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26549408

RESUMO

Focal adhesion kinase is an important target for the treatment of many kinds of cancers. Inhibitors of FAK are proposed to be the anticancer agents for multiple tumors. The interaction characteristic between FAK and its inhibitors is crucial to develop new inhibitors. In the present article, we used Molecular Dynamic (MD) simulation method to explore the characteristic of interaction between FAK and three inhibitors (PHM16, TAE226, and ligand3). The MD simulation results together with MM-GB/SA calculations show that the combinations are enthalpy-driven process. Cys502 and Asp564 are both essential residues due to the hydrogen bond interactions with inhibitors, which was in good agreement with experimental data. Glu500 can form a non-classical hydrogen bond with each inhibitor. Arg426 can form electrostatic interactions with PHM16 and ligand3, while weaker with TAE226. The electronic static potential was employed, and we found that the ortho-position methoxy of TAE226 has a weaker negative charge than the meta-position one in PHM16 or ligand3. Ile428, Val436, Ala452, Val484, Leu501, Glu505, Glu506, Leu553, Gly563 Leu567, Ser568 are all crucial residues in hydrophobic interactions. The key residues in this work will be available for further inhibitor design of FAK and also give assistance to further research of cancer.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/química , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Eletricidade Estática , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...