Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 6(8): 1132-1144, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35773344

RESUMO

The coral reef microbiome is central to reef health and resilience. Competitive interactions between opportunistic coral pathogens and other commensal microbes affect the health of coral. Despite great advances over the years in sequencing-based microbial profiling of healthy and diseased coral, the molecular mechanism underlying colonization competition has been much less explored. In this study, by examining the culturable bacteria inhabiting the gastric cavity of healthy Galaxea fascicularis, a scleractinian coral, we found that temperate phages played a major role in mediating colonization competition in the coral microbiota. Specifically, the non-toxigenic Vibrio sp. inhabiting the healthy coral had a much higher colonization capacity than the coral pathogen Vibrio coralliilyticus, yet this advantage was diminished by the latter killing the former. Pathogen-encoded LodAB, which produces hydrogen peroxide, triggers the lytic cycle of prophage in the non-toxicogenic Vibrio sp. Importantly, V. coralliilyticus could outcompete other coral symbiotic bacteria (for example, Endozoicomonas sp.) through LodAB-dependent prophage induction. Overall, we reveal that LodAB can be used by pathogens as an important weapon to gain a competitive advantage over lysogenic competitors when colonizing corals.


Assuntos
Antozoários , Vibrio , Animais , Recifes de Corais , Ativação Viral
2.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077283

RESUMO

Bacterial capsular polysaccharides (CPSs) participate in environmental adaptation in diverse bacteria species. However, the role and regulation of CPS production in marine bacteria have remained largely unexplored. We previously reported that both wrinkled and translucent Pseudoalteromonas lipolytica variants with altered polysaccharide production were generated in pellicle biofilm-associated cells. In this study, we observed that translucent variants were generated at a rate of ∼20% in colony biofilms of P. lipolytica cultured on HSLB agar plates for 12 days. The DNA sequencing results revealed that nearly 90% of these variants had an IS5-like element inserted within the coding or promoter regions of nine genes in the cps operon. In contrast, IS5 insertion into the cps operon was not detected in planktonic cells. Furthermore, we demonstrated that the IS5 insertion event inactivated CPS production, which leads to a translucent colony morphology. The CPS-deficient variants showed an increased ability to form attached biofilms but exhibited reduced resistance to sublethal concentrations of antibiotics. Moreover, deleting the DNA repair gene recA significantly decreased the frequency of occurrence of CPS-deficient variants during biofilm formation. Thus, IS insertion into the cps operon is an important mechanism for the production of genetic variants during biofilm formation of marine bacteria.


Assuntos
Biofilmes , Elementos de DNA Transponíveis , DNA Bacteriano , Polissacarídeos Bacterianos/metabolismo , Pseudoalteromonas/crescimento & desenvolvimento , Óperon , Polissacarídeos Bacterianos/genética , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo
3.
Mar Drugs ; 17(4)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987346

RESUMO

Toxin-antitoxin (TA) systems are ubiquitous and abundant genetic elements in bacteria and archaea. Most previous TA studies have focused on commensal and pathogenic bacteria, but have rarely focused on marine bacteria, especially those isolated from the deep sea. Here, we identified and characterized three putative TA pairs in the deep-sea-derived Streptomyces sp. strain SCSIO 02999. Our results showed that Orf5461/Orf5462 and Orf2769/Orf2770 are bona fide TA pairs. We provide several lines of evidence to demonstrate that Orf5461 and Orf5462 constitute a type-II TA pair that are homologous to the YoeB/YefM TA pair from Escherichia coli. Although YoeB from SCSIO 02999 was toxic to an E. coli host, the homologous YefM antitoxin from SCSIO 02999 did not neutralize the toxic effect of YoeB from E. coli. For the Orf2769/Orf2770 TA pair, Orf2769 overexpression caused significant cell elongation and could lead to cell death in E. coli, and the neighboring Orf2770 could neutralize the toxic effect of Orf2769. However, no homologous toxin or antitoxin was found for this pair, and no direct interaction was found between Orf2769 and Orf2770. These results suggest that Orf2769 and Orf2770 may constitute a novel TA pair. Thus, deep-sea bacteria harbor typical and novel TA pairs. The biochemical and physiological functions of different TAs in deep-sea bacteria warrant further investigation.


Assuntos
Organismos Aquáticos/fisiologia , Proteínas de Bactérias/genética , Streptomyces/fisiologia , Sistemas Toxina-Antitoxina/genética , Proteínas de Bactérias/isolamento & purificação , Toxinas Bacterianas , Escherichia coli/fisiologia , Proteínas de Escherichia coli/fisiologia , Loci Gênicos/fisiologia , Sedimentos Geológicos/microbiologia , Interações Microbianas/fisiologia , Oceanos e Mares , Homologia de Sequência do Ácido Nucleico
4.
Fish Shellfish Immunol ; 88: 102-110, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30802631

RESUMO

Interleukin-17 (IL-17) is a proinflammatory cytokine that plays an important role in immune responses. In this study, we identified 57 IL-17 genes from the genomes of six marine invertebrates, including Pinctada fucata martensii, Crassostrea gigas, Lottia gigantea, Capitella teleta, Mizuhopecten yessoensis, and Mytilus galloprovincialis. Phylogenetic analysis showed that all invertebrate IL-17 genes were clustered into one group, implying that invertebrate IL-17 evolved from one common ancestral gene. From the extron-intron analysis, we found many intronless IL-17 genes in mollusks, which may be caused by retroposition. Tissue and development transcriptomic analysis showed that the expression of PmIL-17 was tissue and developmental stage-specific. Moreover, we cloned the full length of the IL-17-2 gene from P. f. martensii (PmIL-17-2) and explored its function in the immune response. The full-length cDNA of PmIL-17-2 is 719 bp, containing an open reading frame of 564 bp, a 5' -untranslated region (UTR) of 31 bp, and a 3' -UTR of 124 bp with a 30 bp poly (A) tail. PmIL-17-2 had a strong response to lipopolysaccharide (LPS), indicating that the PmIL-17-2 participates in innate immune responses. In situ hybridization of hemocytes showed that PmIL-17-2 was mainly produced by granulosa cells, and the number of the stained granulosa increased after LPS stimulation. These results lay the foundation for the research of IL-17 family in marine invertebrates.


Assuntos
Evolução Biológica , Interleucina-17/genética , Pinctada/genética , Sequência de Aminoácidos , Animais , Bivalves/genética , Gastrópodes/genética , Perfilação da Expressão Gênica , Hemócitos/metabolismo , Humanos , Imunidade Inata/genética , Interleucina-17/metabolismo , Lipopolissacarídeos/farmacologia , Filogenia , Pinctada/crescimento & desenvolvimento , Pinctada/imunologia , Poliquetos/genética
5.
Microb Biotechnol ; 12(2): 392-404, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30656833

RESUMO

C-tail anchored inner membrane proteins are a family of proteins that contain a C-terminal transmembrane domain but lack an N-terminal signal sequence for membrane targeting. They are widespread in eukaryotes and prokaryotes and play critical roles in membrane traffic, apoptosis and protein translocation in eukaryotes. Recently, we identified and characterized in Escherichia coli a new C-tail anchored inner membrane, ElaB, which is regulated by the stationary phase sigma factor RpoS. ElaB is important for resistance to oxidative stress but the exact mechanism is unclear. Here, we show that ElaB functions as part of the adaptive oxidative stress response by maintaining membrane integrity. Production of ElaB is induced by oxidative stress at the transcriptional level. Moreover, elaB expression is also regulated by the key regulator OxyR via an OxyR binding site in the promoter of elaB. OxyR induces the expression of elaB in the exponential growth phase, while excess OxyR reduces elaB expression in an RpoS-dependent way in the stationary phase. In addition, deletion of elaB reduced fitness compared to wild-type cells after prolonged incubation. Therefore, we determined how ElaB is regulated under oxidative stress: RpoS and OxyR coordinately control the expression of inner membrane protein ElaB.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico , Proteínas de Bactérias , Escherichia coli/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...