Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Vis Exp ; (208)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949318

RESUMO

Following cSCI, activation of the DIAm can be impacted depending on the extent of the injury. The present manuscript describes a unilateral C2 hemisection (C2SH) model of cSCI that disrupts eupneic ipsilateral diaphragm (iDIAm) electromyographic (EMG) activity during breathing in rats. To evaluate recovery of DIAm motor control, the extent of deficit due to C2SH must first be clearly established. By verifying a complete initial loss of iDIAm EMG during breathing, subsequent recovery can be classified as either absent or present, and the extent of recovery can be estimated using the EMG amplitude. Additionally, by measuring the continued absence of iDIAm EMG activity during breathing after the acute spinal shock period following C2SH, the success of the initial C2SH may be validated. Measuring contralateral diaphragm (cDIAm) EMG activity can provide information about the compensatory effects of C2SH, which also reflects neuroplasticity. Moreover, DIAm EMG recordings from awake animals can provide vital physiological information about the motor control of the DIAm after C2SH. This article describes a method for a rigorous, reproducible, and reliable C2SH model of cSCI in rats, which is an excellent platform for studying respiratory neuroplasticity, compensatory cDIAm activity, and therapeutic strategies and pharmaceuticals.


Assuntos
Diafragma , Eletromiografia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Animais , Ratos , Traumatismos da Medula Espinal/fisiopatologia , Diafragma/fisiopatologia , Eletromiografia/métodos , Recuperação de Função Fisiológica/fisiologia , Medula Cervical/lesões , Medula Cervical/fisiopatologia , Ratos Sprague-Dawley , Modelos Animais de Doenças
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473751

RESUMO

The diaphragm muscle is essential for breathing, and its dysfunctions can be fatal. Many disorders affect the diaphragm, including muscular dystrophies. Despite the clinical relevance of targeting the diaphragm, there have been few studies evaluating diaphragm function following a given experimental treatment, with most of these involving anti-inflammatory drugs or gene therapy. Cell-based therapeutic approaches have shown success promoting muscle regeneration in several mouse models of muscular dystrophy, but these have focused mainly on limb muscles. Here we show that transplantation of as few as 5000 satellite cells directly into the diaphragm results in consistent and robust myofiber engraftment in dystrophin- and fukutin-related protein-mutant dystrophic mice. Transplanted cells also seed the stem cell reservoir, as shown by the presence of donor-derived satellite cells. Force measurements showed enhanced diaphragm strength in engrafted muscles. These findings demonstrate the feasibility of cell transplantation to target the diseased diaphragm and improve its contractility.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Diafragma , Camundongos Endogâmicos mdx , Músculo Esquelético , Transplante de Células
3.
J Appl Physiol (1985) ; 136(5): 1113-1121, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511211

RESUMO

The number of motor neurons (MNs) declines precipitously during the final trimester before birth. Thereafter, the number of MNs remains relatively stable, with their connections to skeletal muscle dependent on neurotrophins, including brain-derived neurotrophic factor (BDNF) signaling through its high-affinity full-length tropomyosin-related kinase receptor subtype B (TrkB.FL) receptor. As a genetic knockout of BDNF leads to extensive MN loss and postnatal death within 1-2 days after birth, we tested the hypothesis that postnatal inhibition of BDNF/TrkB.FL signaling is important for postnatal phrenic MN (PhMN) survival. In the present study, we used a 1NMPP1-sensitive TrkBF616A mutant mouse to evaluate the effects of inhibition of TrkB kinase activity on phrenic MN (PhMN) numbers and diaphragm muscle (DIAm) fiber cross-sectional area (CSA). Pups were exposed to 1NMPP1 or vehicle (DMSO) from birth to 21 days old (weaning) via the mother's ingestion in the drinking water. Following weaning, the right phrenic nerve was exposed in the neck and the proximal end dipped in a rhodamine solution to retrogradely label PhMNs. After 24 h, the cervical spinal cord and DIAm were excised. Labeled PhMNs were imaged using confocal microscopy, whereas DIAm strips were frozen at ∼1.5× resting length, cryosectioned, and stained with hematoxylin and eosin to assess CSA. We observed an ∼34% reduction in PhMN numbers and increased primary dendrite numbers in 1NMPP1-treated TrkBF616A mice. The distribution of PhMN size (somal surface area) DIAm fiber cross-sectional areas did not differ. We conclude that survival of PhMNs during early postnatal development is sensitive to BDNF/TrkB.FL signaling.NEW & NOTEWORTHY During early postnatal development, BDNF/TrkB signaling promotes PhMN survival. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact PhMN size. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact the number or CSA of DIAm fibers.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurônios Motores , Nervo Frênico , Receptor trkB , Transdução de Sinais , Animais , Feminino , Masculino , Camundongos , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Diafragma/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Neurônios Motores/efeitos dos fármacos , Nervo Frênico/fisiologia , Nervo Frênico/metabolismo , Nervo Frênico/efeitos dos fármacos , Pirazóis , Pirimidinas , Receptor trkB/metabolismo , Transdução de Sinais/fisiologia
4.
Physiol Rep ; 12(5): e15973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467570

RESUMO

Cervical spinal cord injury impacts ventilatory and non-ventilatory functions of the diaphragm muscle (DIAm) and contributes to clinical morbidity and mortality in the afflicted population. Periodically, integrated brainstem neural circuit activity drives the DIAm to generate a markedly augmented effort or sigh-which plays an important role in preventing atelectasis and thus maintaining lung function. Across species, the general pattern of DIAm efforts during a normal sigh is variable in amplitude and the extent of post-sigh "apnea" (i.e., the post-sigh inter-breath interval). This post-sigh inter-breath interval acts as a respiratory reset, following the interruption of regular respiratory rhythm by sigh. We examined the impact of upper cervical (C2 ) spinal cord hemisection (C2 SH) on the transdiaphragmatic pressure (Pdi ) generated during sighs and the post-sigh respiratory reset in rats. Sighs were identified in Pdi traces by their characteristic biphasic pattern. We found that C2 SH results in a reduction of Pdi during both eupnea and sighs, and a decrease in the immediate post-sigh breath interval. These results are consistent with partial removal of descending excitatory synaptic inputs to phrenic motor neurons that results from C2 SH. Following cervical spinal cord injury, a reduction in the amplitude of Pdi during sighs may compromise the maintenance of normal lung function.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Respiração , Diafragma/fisiologia
5.
J Neurophysiol ; 129(4): 781-792, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883761

RESUMO

Previous studies show that synaptic quantal release decreases during repetitive stimulation, i.e., synaptic depression. Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). We hypothesized that BDNF mitigates synaptic depression at the neuromuscular junction and that the effect is more pronounced at type IIx and/or IIb fibers compared to type I or IIa fibers given the more rapid reduction in docked synaptic vesicles with repetitive stimulation. Rat phrenic nerve-diaphragm muscle preparations were used to determine the effect of BDNF on synaptic quantal release during repetitive stimulation at 50 Hz. An ∼40% decline in quantal release was observed during each 330-ms duration train of nerve stimulation (intratrain synaptic depression), and this intratrain decline was observed across repetitive trains (20 trains at 1/s repeated every 5 min for 30 min for 6 sets). BDNF treatment significantly enhanced quantal release at all fiber types (P < 0.001). BDNF treatment did not change release probability within a stimulation set but enhanced synaptic vesicle replenishment between sets. In agreement, synaptic vesicle cycling (measured using FM4-64 fluorescence uptake) was increased following BDNF [or neurotrophin-4 (NT-4)] treatment (∼40%; P < 0.05). Conversely, inhibiting BDNF/TrkB signaling with the tyrosine kinase inhibitor K252a and TrkB-IgG (which quenches endogenous BDNF or NT-4) decreased FM4-64 uptake (∼34% across fiber types; P < 0.05). The effects of BDNF were generally similar across all fiber types. We conclude that BDNF/TrkB signaling acutely enhances presynaptic quantal release and thereby may serve to mitigate synaptic depression and maintain neuromuscular transmission during repetitive activation.NEW & NOTEWORTHY Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). Rat phrenic nerve-diaphragm muscle preparations were used to determine the rapid effect of BDNF on synaptic quantal release during repetitive stimulation. BDNF treatment significantly enhanced quantal release at all fiber types. BDNF increased synaptic vesicle cycling (measured using FM4-64 fluorescence uptake); conversely, inhibiting BDNF/TrkB signaling decreased FM4-64 uptake.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Diafragma , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diafragma/fisiologia , Tropomiosina/farmacologia , Junção Neuromuscular/fisiologia
6.
J Physiol ; 601(12): 2513-2532, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36815402

RESUMO

Spinal cord hemisection at C2 (C2 SH), sparing the dorsal column is widely used to investigate the effects of reduced phrenic motor neuron (PhMN) activation on diaphragm muscle (DIAm) function, with reduced DIAm activity on the injured side during eupnoea. Following C2 SH, recovery of DIAm EMG activity may occur spontaneously over subsequent days/weeks. Various strategies have been effective at improving the incidence and magnitude of DIAm recovery during eupnoea, but little is known about the effects of C2 SH on transdiaphragmatic pressure (Pdi ) during other ventilatory and non-ventilatory behaviours. We employ SPG302, a novel type of pegylated benzothiazole derivative, to assess whether enhancing synaptogenesis (i.e., enhancing spared local connections) will improve the incidence and the magnitude of recovery of DIAm EMG activity and Pdi function 14 days post-C2 SH. In anaesthetised Sprague-Dawley rats, DIAm EMG and Pdi were assessed during eupnoea, hypoxia/hypercapnia and airway occlusion prior to surgery (C2 SH or sham), immediately post-surgery and at 14 days post-surgery. In C2 SH rats, 14 days of DMSO (vehicle) or SPG302 treatments (i.p. injection) occurred. At the terminal experiment, maximum Pdi was evoked by bilateral phrenic nerve stimulation. We show that significant EMG and Pdi deficits are apparent in C2 SH compared with sham rats immediately after surgery. In C2 SH rats treated with SPG302, recovery of eupneic, hypoxia/hypercapnia and occlusion DIAm EMG was enhanced compared with vehicle rats after 14 days. Treatment with SPG302 also ameliorated Pdi deficits following C2 SH. In summary, SPG302 is an exciting new therapy to explore for use in spinal cord injuries. KEY POINTS: Despite advances in our understanding of the effects of cervical hemisection (C2 SH) on diaphragm muscle (DIAm) EMG activity, very little is understood about the impact of C2 SH on the gamut of ventilatory and non-ventilatory transdiaphragmatic pressures (Pdi ). Recovery of DIAm activity following C2 SH is improved using a variety of approaches, but very few pharmaceuticals have been shown to be effective. One way of improving DIAm recovery is to enhance the amount of latent local spared connections onto phrenic motor neurons. A novel pegylated benzothiazole derivative enhances synaptogenesis in a variety of neurodegenerative conditions. Here, using a novel therapeutic SPG302, we show that 14 days of treatment with SPG302 ameliorated DIAm EMG and Pdi deficits compared with vehicle controls. Our results show that SPG302 is a compound with very promising potential for use in improving functional outcomes post-spinal cord injury.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Ratos , Animais , Diafragma/fisiologia , Ratos Sprague-Dawley , Hipercapnia , Traumatismos da Medula Espinal/tratamento farmacológico , Hipóxia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Nervo Frênico/fisiologia , Recuperação de Função Fisiológica/fisiologia
7.
J Appl Physiol (1985) ; 133(1): 60-68, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608200

RESUMO

Spasticity is a common symptom in many developmental motor disorders, including spastic cerebral palsy (sCP). In sCP, respiratory dysfunction is a major contributor to morbidity and mortality, yet it is unknown how spasticity influences respiratory physiology or diaphragm muscle (DIAm) function. To investigate the influence of spasticity on DIAm function, we assessed in vivo transdiaphragmatic pressure (Pdi - measured using intraesophageal and intragastric pressure catheters under conditions of eupnea, hypoxia/hypercapnia and occlusion) including maximum Pdi (Pdimax via bilateral phrenic nerve stimulation), ex vivo DIAm-specific force and fatigue (using muscle strips stimulated with platinum plate electrodes), and type-specific characteristics of DIAm fiber cross sections (using immunoreactivity against myosin heavy chain slow and 2A) in spa and wildtype mice. Spa mice show reduced Pdimax, reduced DIAm specific force, and altered fatigability and atrophy of type IIx/IIb fibers. These findings suggest marked DIAm dysfunction may underlie the respiratory phenotype of sCP.NEW & NOTEWORTHY Developmental motor control dysfunctions, including spastic cerebral palsy (sCP) often have respiratory components. Spa mutant mice exhibit a spastic phenotype closely resembling sCP symptoms. Using the spa mouse model of spastic cerebral palsy (sCP), we quantified transdiaphragmatic pressure deficits, diaphragm muscle weakness, and fiber type-specific atrophy, improving our understanding of respiratory dysfunctions in sCP.


Assuntos
Paralisia Cerebral , Doenças Musculares , Animais , Atrofia , Diafragma/fisiologia , Camundongos , Espasticidade Muscular , Nervo Frênico/fisiologia
8.
Exp Neurol ; 353: 114030, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35247372

RESUMO

Upper cervical spinal cord injuries (SCI) disrupt descending inputs to phrenic motor neurons (PhMNs), impairing respiratory function. Unilateral spinal hemisection at C2 (C2SH) results in loss of ipsilateral rhythmic diaphragm muscle (DIAm) EMG activity associated with lower force behaviors accomplished by recruitment of smaller PhMNs in rats. Activity during higher force, non-ventilatory behaviors that recruit larger PhMNs is minimally impaired following C2SH. We previously showed neuroplasticity in glutamatergic receptor expression in PhMN post-C2SH with changes in NMDA receptor expression reflecting functional recovery over time. We hypothesize that C2SH-induced changes in glutamatergic receptor (AMPA and NMDA) mRNA expression in PhMNs vary with motor neuron size, with more pronounced changes in smaller PhMNs. Retrogradely-labelled PhMNs were classified in tertiles according to somal surface area and mRNA expression was measured using single-cell, multiplex fluorescence in situ hybridization. Ipsilateral to C2SH, a pronounced reduction in NMDA mRNA expression in PhMNs was evident at 3 days post-injury with similar impact on PhMNs in the lower size tertile (~68% reduction) and upper tertile (~60%); by 21 days, there was near complete restoration of NMDA receptor mRNA expression across all PhMNs. There were no changes in NMDA mRNA expression contralateral to C2SH. There were no changes in AMPA mRNA expression at PhMNs on either side of the spinal cord or at any time-point post-C2SH. In summary, following C2SH there is ipsilateral reduction in PhMN NMDA mRNA expression at 3 days that is not limited to smaller PhMN recruited in the generation of lower force ventilatory behaviors. The recovery of NMDA mRNA expression by 21 days post-C2SH is consistent with evidence of spontaneous recovery of ipsilateral DIAm activity at this timepoint. These findings suggest a possible role for NMDA receptor mediated glutamatergic signaling in mechanisms supporting postsynaptic neuroplasticity at the PhMN pool and recovery of DIAm activity after cervical SCI.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Animais , Medula Cervical/lesões , Diafragma/fisiologia , Hibridização in Situ Fluorescente , Neurônios Motores/fisiologia , N-Metilaspartato/metabolismo , Nervo Frênico/fisiologia , RNA Mensageiro/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Recuperação de Função Fisiológica/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
9.
J Neurophysiol ; 125(6): 2158-2165, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949892

RESUMO

Unilateral C2 hemisection (C2SH) disrupts descending inspiratory-related drive to phrenic motor neurons and thus, silences rhythmic diaphragm muscle (DIAm) activity. There is gradual recovery of rhythmic DIAm EMG activity over time post-C2SH, consistent with neuroplasticity, which is enhanced by chronic (2 wk) intrathecal BDNF treatment. In the present study, we hypothesized that acute (30 min) intrathecal BDNF treatment also enhances recovery of DIAm EMG activity after C2SH. Rats were implanted with bilateral DIAm EMG electrodes to verify the absence of ipsilateral eupneic DIAm EMG activity at the time of C2SH and at 3 days post-C2SH. In those animals displaying no recovery of DIAm EMG activity after 28 days (n = 7), BDNF was administered intrathecally (450 mcg) at C4. DIAm EMG activity was measured continuously both before and for 30 min after BDNF treatment, during eupnea, hypoxia-hypercapnia, and spontaneous sighs. Acute BDNF treatment restored eupneic DIAm EMG activity in all treated animals to an amplitude that was 78% ± 9% of pre-C2SH root mean square (RMS) (P < 0.001). In addition, acute BDNF treatment increased DIAm RMS EMG amplitude during hypoxia-hypercapnia (P = 0.023) but had no effect on RMS EMG amplitude during sighs. These results support an acute modulatory role of BDNF signaling on excitatory synaptic transmission at phrenic motor neurons after cervical spinal cord injury.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) plays an important role in promoting neuroplasticity following unilateral C2 spinal hemisection (C2SH). BDNF was administered intrathecally in rats displaying lack of ipsilateral inspiratory-related diaphragm (DIAm) EMG activity after C2SH. Acute BDNF treatment (30 min) restored eupneic DIAm EMG activity in all treated animals to 78% ± 9% of pre-C2SH level. In addition, acute BDNF treatment increased DIAm EMG amplitude during hypoxia-hypercapnia but had no effect on EMG amplitude during sighs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Medula Cervical/lesões , Diafragma/efeitos dos fármacos , Diafragma/fisiopatologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Animais , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Modelos Animais de Doenças , Eletromiografia , Injeções Espinhais , Masculino , Ratos , Ratos Sprague-Dawley
10.
J Physiol ; 598(20): 4693-4711, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32735344

RESUMO

KEY POINTS: Motor units, comprising a motor neuron and the muscle fibre it innervates, are activated in an orderly fashion to provide varying amounts of force. A unilateral C2 spinal hemisection (C2SH) disrupts predominant excitatory input from medulla, causing cessation of inspiratory-related diaphragm muscle activity, whereas higher force, non-ventilatory diaphragm activity persists. In this study, we show a disproportionately larger loss of excitatory glutamatergic innervation to small phrenic motor neurons (PhMNs) following C2SH, as compared with large PhMNs ipsilateral to injury. Our data suggest that there is a dichotomy in the distribution of inspiratory-related descending excitatory glutamatergic input to small vs. large PhMNs that reflects their differential recruitment. ABSTRACT: Excitatory glutamatergic input mediating inspiratory drive to phrenic motor neurons (PhMNs) emanates primarily from the ipsilateral ventrolateral medulla. Unilateral C2 hemisection (C2SH) disrupts this excitatory input, resulting in cessation of inspiratory-related diaphragm muscle (DIAm) activity. In contrast, after C2SH, higher force, non-ventilatory DIAm activity persists. Inspiratory behaviours require recruitment of only smaller PhMNs, whereas with more forceful expulsive/straining behaviours, larger PhMNs are recruited. Accordingly, we hypothesize that C2SH primarily disrupts glutamatergic synaptic inputs to smaller PhMNs, whereas glutamatergic synaptic inputs to larger PhMNs are preserved. We examined changes in glutamatergic presynaptic input onto retrogradely labelled PhMNs using immunohistochemistry for VGLUT1 and VGLUT2. We found that 7 days after C2SH there was an ∼60% reduction in glutamatergic inputs to smaller PhMNs compared with an ∼35% reduction at larger PhMNs. These results are consistent with a more pronounced impact of C2SH on inspiratory behaviours of the DIAm, and the preservation of higher force behaviours after C2SH. These results indicate that the source of glutamatergic synaptic input to PhMNs varies depending on motor neuron size and reflects different functional control - perhaps separate central pattern generator and premotor circuits. For smaller PhMNs, the central pattern generator for inspiration is located in the pre-Bötzinger complex and premotor neurons in the ventrolateral medulla, sending predominantly ipsilateral projections via the dorsolateral funiculus. C2SH disrupts this glutamatergic input. For larger PhMNs, a large proportion of excitatory inputs appear to exist below the C2 level or from contralateral regions of the brainstem and spinal cord.


Assuntos
Nervo Frênico , Traumatismos da Medula Espinal , Diafragma , Humanos , Neurônios Motores
11.
Physiol Rep ; 8(1): e14305, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31908152

RESUMO

Sarcopenia is the age-related decline of skeletal muscle mass and function. Diaphragm muscle (DIAm) sarcopenia may contribute to respiratory complications, a common cause of morbidity and mortality in the elderly. From 6 to 24 months (mo) of age, representing ~100% and ~80% survival in C57BL/6 × 129 male and female mice, there is a significant reduction in DIAm force generation (~30%) and cross-sectional area (CSA) of type IIx and/or IIb muscle fibers (~30%), impacting the ability to perform high force, non-ventilatory behaviors. To date, there is little information available regarding DIAm sarcopenia in very old age groups. The present study examined DIAm sarcopenia in C57BL/6 × 129 male and female mice at 24, 27, and 30 mo, representing ~80%, ~60%, and ~30% survival, respectively. We hypothesized that survival into older ages will show no further worsening of DIAm sarcopenia and functional impairment in 30 mo mice compared to 24 or 27 mo C57BL/6 × 129 mice. Measurements included resting ventilation, transdiaphragmatic pressure (Pdi) generation across a range of motor behaviors, muscle fiber CSA, and proportion of type-identified DIAm fibers. Maximum Pdi and resting ventilation did not change into very old age (from 24 to 30 mo). Type IIx and/or IIb fiber CSA and proportions did not change into very old age. The results of the study support a critical threshold for the reduction in DIAm force and Pdi such that survival into very old age is not associated with evidence of progression of DIAm sarcopenia or impairment in ventilation.


Assuntos
Envelhecimento/fisiologia , Diafragma/fisiopatologia , Força Muscular/fisiologia , Pressão , Sarcopenia/fisiopatologia , Envelhecimento/patologia , Animais , Diafragma/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares Esqueléticas/patologia , Tamanho do Órgão , Pletismografia Total , Respiração , Sarcopenia/patologia
12.
J Comp Neurol ; 526(18): 2973-2983, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30411341

RESUMO

Structural plasticity in motoneurons may be influenced by activation history and motoneuron-muscle fiber interactions. The goal of this study was to examine the morphological adaptations of phrenic motoneurons following imposed motoneuron inactivity while controlling for diaphragm muscle inactivity. Well-characterized rat models were used including unilateral C2 spinal hemisection (SH; ipsilateral phrenic motoneurons and diaphragm muscle are inactive) and tetrodotoxin phrenic nerve blockade (TTX; ipsilateral diaphragm muscle is paralyzed while phrenic motoneuron activity is preserved). We hypothesized that inactivity of phrenic motoneurons would result in a decrease in motoneuron size, consistent with a homeostatic increase in excitability. Phrenic motoneurons were retrogradely labeled by ipsilateral diaphragm muscle injection of fluorescent dextrans or cholera toxin subunit B. Following 2 weeks of diaphragm muscle paralysis, morphological parameters of labeled ipsilateral phrenic motoneurons were assessed quantitatively using fluorescence confocal microscopy. Compared to controls, phrenic motoneuron somal volumes and surface areas decreased with SH, but increased with TTX. Total phrenic motoneuron surface area was unchanged by SH, but increased with TTX. Dendritic surface area was estimated from primary dendrite diameter using a power equation obtained from three-dimensional reconstructed phrenic motoneurons. Estimated dendritic surface area was not significantly different between control and SH, but increased with TTX. Similarly, TTX significantly increased total phrenic motoneuron surface area. These results suggest that ipsilateral phrenic motoneuron morphological adaptations are consistent with a normalization of motoneuron excitability following prolonged alterations in motoneuron activity. Phrenic motoneuron structural plasticity is likely more dependent on motoneuron activity (or descending input) than muscle fiber activity.


Assuntos
Neurônios Motores/patologia , Plasticidade Neuronal/fisiologia , Paralisia Respiratória/patologia , Paralisia Respiratória/fisiopatologia , Animais , Diafragma/inervação , Modelos Animais de Doenças , Nervo Frênico/patologia , Nervo Frênico/fisiopatologia , Ratos , Ratos Sprague-Dawley
13.
J Neurophysiol ; 119(5): 1852-1862, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412773

RESUMO

Sarcopenia is the age-related reduction of muscle mass and specific force. In previous studies, we found that sarcopenia of the diaphragm muscle (DIAm) is evident by 24 mo of age in both rats and mice and is associated with selective atrophy of type IIx and IIb muscle fibers and a decrease in maximum specific force. These fiber type-specific effects of sarcopenia resemble those induced by DIAm denervation, leading us to hypothesize that sarcopenia is due to an age-related loss of phrenic motor neurons (PhMNs). To address this hypothesis, we determined the number of PhMNs in young (6 mo old) and old (24 mo old) Fischer 344 rats. Moreover, we determined age-related changes in the size of PhMNs, since larger PhMNs innervate type IIx and IIb DIAm fibers. The PhMN pool was retrogradely labeled and imaged with confocal microscopy to assess the number of PhMNs and the morphometry of PhMN soma and proximal dendrites. In older animals, there were 22% fewer PhMNs, a 19% decrease in somal surface area, and a 21% decrease in dendritic surface area compared with young Fischer 344 rats. The age-associated loss of PhMNs involved predominantly larger PhMNs. These results are consistent with an age-related denervation of larger, more fatigable DIAm motor units, which are required primarily for high-force airway clearance behaviors. NEW & NOTEWORTHY Diaphragm muscle sarcopenia in rodent models is well described in the literature; however, the relationship between sarcopenia and frank phrenic motor neuron (MN) loss is unexplored in these models. We quantify a 22% loss of phrenic MNs in old (24 mo) compared with young (6 mo) Fischer 344 rats. We also report reductions in phrenic MN somal and proximal dendritic morphology that relate to decreased MN heterogeneity in old compared with young Fischer 344 rats.


Assuntos
Envelhecimento/patologia , Medula Cervical/patologia , Diafragma/patologia , Neurônios Motores/patologia , Nervo Frênico/patologia , Sarcopenia/patologia , Animais , Feminino , Masculino , Ratos , Ratos Endogâmicos F344
14.
J Appl Physiol (1985) ; 124(4): 915-922, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357493

RESUMO

Respiratory muscles such as the diaphragm are active across a range of behaviors including ventilation and higher-force behaviors necessary for maintenance of airway patency, and minimal information is available regarding anesthetic effects on the capacity of respiratory muscles to generate higher forces. The purpose of the present study was to determine whether diaphragm EMG activity during lower-force behaviors, such as eupnea and hypoxia-hypercapnia, is differentially affected compared with higher-force behaviors, such as a sigh, in lightly anesthetized animals. In adult male rats, chronically implanted diaphragm EMG electrodes were used to measure the effects of low-dose ketamine (30 mg/kg) and xylazine (3 mg/kg) on root mean square (RMS) EMG amplitude across a range of motor behaviors. A mixed linear model was used to evaluate the effects of ketamine-xylazine anesthesia on peak RMS EMG and ventilatory parameters, with condition (awake vs. anesthetized), behavior (eupnea, hypoxia-hypercapnia, sigh), side (left or right hemidiaphragm), and their interactions as fixed effects and animal as a random effect. Compared with the awake recordings, there was an overall reduction of peak diaphragm RMS EMG across behaviors during anesthesia, but this reduction was more pronounced during spontaneous sighs (which require ~60% of maximal diaphragm force). Respiratory rates and duty cycle during eupnea and hypoxia-hypercapnia were higher in awake compared with anesthetized conditions. These results highlight the importance of identifying anesthetic effects on a range of respiratory motor behaviors, including sighs necessary for maintaining airway patency. NEW & NOTEWORTHY Respiratory muscles accomplish a range of motor behaviors, with forces generated for ventilatory behaviors comprising only a small fraction of their maximal force generating capacity. Induction of anesthesia exerts more robust effects on the higher-force diaphragm motor behaviors such as sighs compared with eupnea. This novel information on effects of low, sedative doses of a commonly used anesthetic combination (ketamine-xylazine) highlights the importance of identifying anesthetic effects on a range of respiratory motor behaviors.


Assuntos
Anestesia , Diafragma/fisiologia , Respiração , Animais , Eletromiografia , Masculino , Ratos Sprague-Dawley
15.
J Neurophysiol ; 118(3): 1732-1738, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28659464

RESUMO

Incomplete cervical spinal cord hemisection at C2 (SH) disrupts descending excitatory drive to phrenic motoneurons, paralyzing the ipsilateral diaphragm muscle. Spontaneous recovery over time is associated with increased phrenic motoneuron expression of glutamatergic N-methyl-d-aspartate (NMDA) and serotonergic 5-HT2A receptors. We hypothesized that NMDA and 5-HT2A receptor-mediated neurotransmission play a role in ipsilateral diaphragm muscle activity post-SH. Adult male Sprague-Dawley rats were implanted with bilateral diaphragm EMG electrodes for chronic EMG recordings up to 28 days post-SH (SH 28D). The extent of recovery was calculated by peak root-mean-square (RMS) EMG amplitude. In all animals, absence of ipsilateral activity was verified at 3 days post-SH. Diaphragm EMG activity was also recorded during exposure to hypoxia-hypercapnia (10% O2-5% CO2). In SH animals displaying recovery of ipsilateral diaphragm EMG activity at SH 28D, cervical spinal cord segments containing the phrenic motor nucleus (C3-C5) were surgically exposed and either the NMDA receptor antagonist d-2-amino-5-phosphonovalerate (d-AP5; 100 mM, 30 µl) or 5-HT2A receptor antagonist ketanserin (40 mM, 30 µl) was instilled intrathecally. Following d-AP5, diaphragm EMG amplitude was reduced ipsilaterally, during both eupnea (42% of pre-d-AP5 value; P = 0.007) and hypoxia-hypercapnia (31% of pre-d-AP5 value; P = 0.015), with no effect on contralateral EMG activity or in uninjured controls. Treatment with ketanserin did not change ipsilateral or contralateral RMS EMG amplitude in SH animals displaying recovery at SH 28D. Our results suggest that spinal glutamatergic NMDA receptor-mediated neurotransmission plays an important role in ipsilateral diaphragm muscle activity after cervical spinal cord injury.NEW & NOTEWORTHY Spontaneous recovery following C2 spinal hemisection (SH) is associated with increased phrenic motoneuron expression of glutamatergic and serotonergic receptors. In this study, we show that pharmacological inhibition of glutamatergic N-methyl-d-aspartate (NMDA) receptors blunts ipsilateral diaphragm activity post-SH. In contrast, pharmacological inhibition of serotonergic 5-HT2A receptors does not change diaphragm EMG activity post-SH. Our results suggest that NMDA receptor-mediated glutamatergic neurotransmission plays an important role in enhancing rhythmic respiratory-related diaphragm activity after spinal cord injury.


Assuntos
Diafragma/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Serotonina/metabolismo , Traumatismos da Medula Espinal/metabolismo , Transmissão Sináptica , Animais , Diafragma/inervação , Diafragma/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Contração Muscular/efeitos dos fármacos , Nervo Frênico/citologia , Nervo Frênico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Antagonistas da Serotonina/farmacologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
16.
Physiol Rep ; 5(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28082429

RESUMO

Previously, we found that brain-derived neurotrophic factor (BDNF) signaling through the high-affinity tropomyosin-related kinase receptor subtype B (TrkB) enhances neuromuscular transmission in the diaphragm muscle. However, there is an age-related loss of this effect of BDNF/TrkB signaling that may contribute to diaphragm muscle sarcopenia (atrophy and force loss). We hypothesized that chronic treatment with 7,8-dihydroxyflavone (7,8-DHF), a small molecule BDNF analog and TrkB agonist, will mitigate age-related diaphragm neuromuscular transmission failure and sarcopenia in old mice. Adult male TrkBF616A mice (n = 32) were randomized to the following 6-month treatment groups: vehicle-control, 7,8-DHF, and 7,8-DHF and 1NMPP1 (an inhibitor of TrkB kinase activity in TrkBF616A mice) cotreatment, beginning at 18 months of age. At 24 months of age, diaphragm neuromuscular transmission failure, muscle-specific force, and fiber cross-sectional areas were compared across treatment groups. The results did not support our hypothesis in that chronic 7,8-DHF treatment did not improve diaphragm neuromuscular transmission or mitigate diaphragm muscle sarcopenia. Taken together, these results do not exclude a role for BDNF/TrkB signaling in aging-related changes in the diaphragm muscle, but they do not support the use of 7,8-DHF as a therapeutic agent to mitigate age-related neuromuscular dysfunction.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diafragma/inervação , Flavonas/farmacologia , Doenças da Junção Neuromuscular/fisiopatologia , Receptor trkB/antagonistas & inibidores , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diafragma/efeitos dos fármacos , Diafragma/fisiopatologia , Flavonas/administração & dosagem , Flavonas/metabolismo , Masculino , Camundongos , Doenças da Junção Neuromuscular/tratamento farmacológico , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Receptor trkB/metabolismo , Receptor trkB/farmacologia , Sarcopenia/patologia , Transdução de Sinais
17.
J Comp Neurol ; 525(5): 1192-1205, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27650492

RESUMO

Cervical spinal hemisection at C2 (SH) removes premotor drive to phrenic motoneurons located in segments C3-C5 in rats. Spontaneous recovery of ipsilateral diaphragm muscle activity is associated with increased phrenic motoneuron expression of glutamatergic N-methyl-D-aspartate (NMDA) receptors and decreased expression of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors. Glutamatergic receptor expression is regulated by tropomyosin-related kinase receptor subtype B (TrkB) signaling in various neuronal systems, and increased TrkB receptor expression in phrenic motoneurons enhances recovery post-SH. Accordingly, we hypothesize that recovery of ipsilateral diaphragm muscle activity post-SH, whether spontaneous or enhanced by adenoassociated virus (AAV)-mediated upregulation of TrkB receptor expression, is associated with increased expression of glutamatergic NMDA receptors in phrenic motoneurons. Adult male Sprague-Dawley rats underwent diaphragm electromyography electrode implantation and SH surgery. Rats were injected intrapleurally with AAV expressing TrkB or GFP 3 weeks before SH. At 14 days post-SH, the proportion of animals displaying recovery of ipsilateral diaphragm activity increased in AAV-TrkB-treated (9/9) compared with untreated (3/5) or AAV-GFP-treated (4/10; P < 0.027) animals. Phrenic motoneuron NMDA NR1 subunit mRNA expression was approximately fourfold greater in AAV-TrkB- vs. AAV-GFP-treated SH animals (P < 0.004) and in animals displaying recovery vs. those not recovering (P < 0.005). Phrenic motoneuron AMPA glutamate receptor 2 (GluR2) subunit mRNA expression decreased after SH, and, albeit increased in animals displaying recovery vs. those not recovering, levels remained lower than control. We conclude that increased phrenic motoneuron expression of glutamatergic NMDA receptors is associated with spontaneous recovery after SH and enhanced recovery after AAV-TrkB treatment. J. Comp. Neurol. 525:1192-1205, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Diafragma/inervação , Neurônios Motores/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Modelos Animais de Doenças , Microdissecção e Captura a Laser , Masculino , Nervo Frênico/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptor trkB/metabolismo
18.
J Neurophysiol ; 117(2): 537-544, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27832605

RESUMO

Unilateral C2 cervical spinal cord hemisection (SH) disrupts descending excitatory drive to phrenic motor neurons, thereby paralyzing the ipsilateral diaphragm muscle (DIAm) during ventilatory behaviors. Recovery of rhythmic DIAm activity ipsilateral to injury occurs over time, consistent with neuroplasticity and strengthening of spared synaptic inputs to phrenic motor neurons. Localized intrathecal delivery of brain-derived neurotrophic factor (BDNF) to phrenic motor neurons after SH enhances recovery of eupneic DIAm activity. However, the impact of SH and BDNF treatment on the full range of DIAm motor behaviors has not been fully characterized. We hypothesized that all DIAm motor behaviors are affected by SH and that intrathecal BDNF enhances the recovery of both ventilatory and higher force, nonventilatory motor behaviors. An intrathecal catheter was placed in adult, male Sprague-Dawley rats at C4 to chronically infuse artificial cerebrospinal fluid (aCSF) or BDNF. DIAm electromyography (EMG) electrodes were implanted bilaterally to record activity across motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), sighs, airway occlusion, and sneezing. After SH, ipsilateral DIAm EMG activity was evident in only 43% of aCSF-treated rats during eupnea, and activity was restored in all rats after BDNF treatment. The amplitude of DIAm EMG (root mean square, RMS) was reduced following SH during eupnea and hypoxia-hypercapnia in aCSF-treated rats, and BDNF treatment promoted recovery in both conditions. The amplitude of DIAm RMS EMG during sighs, airway occlusion, and sneezing was not affected by SH or BDNF treatment. We conclude that the effects of SH and BDNF treatment on DIAm activity depend on motor behavior. NEW & NOTEWORTHY: This study demonstrates that after unilateral C2 spinal cord hemisection (SH), there are differences in the spontaneous recovery of diaphragm (DIAm) electromyographic activity during ventilatory compared with more forceful, nonventilatory motor behaviors. Furthermore, we show that intrathecal delivery of brain-derived neurotrophic factor (BDNF) at the level of the phrenic motor neuron pool enhances recovery of ipsilateral DIAm activity following SH, exerting main effects on recovery of ventilatory but not higher force, nonventilatory behaviors.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Atividade Motora/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Análise de Variância , Animais , Diafragma/efeitos dos fármacos , Diafragma/fisiopatologia , Modelos Animais de Doenças , Eletromiografia , Lateralidade Funcional/efeitos dos fármacos , Inalação/efeitos dos fármacos , Injeções Espinhais , Masculino , Ratos , Ratos Sprague-Dawley
19.
Exp Neurol ; 276: 31-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26607912

RESUMO

Unilateral cervical spinal cord hemisection at C2 (C2SH) interrupts descending bulbospinal inputs to phrenic motoneurons, paralyzing the diaphragm muscle. Recovery after C2SH is enhanced by brain derived neurotrophic factor (BDNF) signaling via the tropomyosin-related kinase subtype B (TrkB) receptor in phrenic motoneurons. The role for gene therapy using adeno-associated virus (AAV)-mediated delivery of TrkB to phrenic motoneurons is not known. The present study determined the therapeutic efficacy of intrapleural delivery of AAV7 encoding for full-length TrkB (AAV-TrkB) to phrenic motoneurons 3 days post-C2SH. Diaphragm EMG was recorded chronically in male rats (n=26) up to 21 days post-C2SH. Absent ipsilateral diaphragm EMG activity was verified 3 days post-C2SH. A greater proportion of animals displayed recovery of ipsilateral diaphragm EMG activity during eupnea by 14 and 21 days post-SH after AAV-TrkB (10/15) compared to AAV-GFP treatment (2/11; p=0.031). Diaphragm EMG amplitude increased over time post-C2SH (p<0.001), and by 14 days post-C2SH, AAV-TrkB treated animals displaying recovery achieved 48% of the pre-injury values compared to 27% in AAV-GFP treated animals. Phrenic motoneuron mRNA expression of glutamatergic AMPA and NMDA receptors revealed a significant, positive correlation (r(2)=0.82), with increased motoneuron NMDA expression evident in animals treated with AAV-TrkB and that displayed recovery after C2SH. Overall, gene therapy using intrapleural delivery of AAV-TrkB to phrenic motoneurons is sufficient to promote recovery of diaphragm activity, adding a novel potential intervention that can be administered after upper cervical spinal cord injury to improve impaired respiratory function.


Assuntos
Terapia Genética/métodos , Glicoproteínas de Membrana/genética , Proteínas Tirosina Quinases/genética , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Animais , Medula Cervical/patologia , Vértebras Cervicais , Masculino , Glicoproteínas de Membrana/administração & dosagem , Proteínas Tirosina Quinases/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor trkB , Traumatismos da Medula Espinal/patologia
20.
J Neurotrauma ; 32(3): 185-93, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25093762

RESUMO

Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are important in modulating neuroplasticity and promoting recovery after spinal cord injury. Intrathecal delivery of BDNF enhances functional recovery following unilateral spinal cord hemisection (SH) at C2, a well-established model of incomplete cervical spinal cord injury. We hypothesized that localized delivery of BDNF-expressing mesenchymal stem cells (BDNF-MSCs) would promote functional recovery of rhythmic diaphragm activity after SH. In adult rats, bilateral diaphragm electromyographic (EMG) activity was chronically monitored to determine evidence of complete SH at 3 days post-injury, and recovery of rhythmic ipsilateral diaphragm EMG activity over time post-SH. Wild-type, bone marrow-derived MSCs (WT-MSCs) or BDNF-MSCs (2×10(5) cells) were injected intraspinally at C2 at the time of injury. At 14 days post-SH, green fluorescent protein (GFP) immunoreactivity confirmed MSCs presence in the cervical spinal cord. Functional recovery in SH animals injected with WT-MSCs was not different from untreated SH controls (n=10; overall, 20% at 7 days and 30% at 14 days). In contrast, functional recovery was observed in 29% and 100% of SH animals injected with BDNF-MSCs at 7 days and 14 days post-SH, respectively (n=7). In BDNF-MSCs treated SH animals at 14 days, root-mean-squared EMG amplitude was 63±16% of the pre-SH value compared with 12±9% in the control/WT-MSCs group. We conclude that localized delivery of BDNF-expressing MSCs enhances functional recovery of diaphragm muscle activity following cervical spinal cord injury. MSCs can be used to facilitate localized delivery of trophic factors such as BDNF in order to promote neuroplasticity following spinal cord injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Transplante de Células-Tronco Mesenquimais/métodos , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/patologia , Animais , Vértebras Cervicais , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Microscopia Confocal , Ratos , Ratos Sprague-Dawley , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...