Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 9: 1384, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283489

RESUMO

The inulin-type fructans in Jerusalem artichoke (Helianthus tuberosus L.) tubers exhibit different degrees of polymerization and are critical for germination. We aimed to characterize the sugar metabolism dynamics in the tubers without bud eyes or shoots (T) and BE/S of indoor- and field-grown Jerusalem artichokes during germination. Ht1-FEH II and Ht1-FEH III (1-fructan exohydrolases II and III, inulin-degrading enzymes) expression increased 5 days after planting indoors, whereas Ht1-FEH II expression increased 72 days after planting in the field in T and BE/S. Ht1-SST (sucrose:sucrose 1-fructosyl transferase, inulin synthesis initiator), and Ht1-FFT (fructan:fructan 1-fructosyl transferase, inulin elongator) expression generally decreased in indoor-grown T. The enzyme activities of 1-FEH and 1-FFT were unchanged during germination in both indoor- and field-grown T and BE/S, whereas 1-SST activity decreased in indoor-grown T, while 1-FEH and 1-FFT activities increased as a function of germination time in BE/S of both indoor- and field-grown tubers. The total soluble sugar content gradually decreased in T after germination indoors or in the field, while at the end of germination, the sucrose and fructan contents decreased, and fructose content increased in the field. The enzyme activities of soluble vacuolar (VI) or neutral invertase (NI) did not change significantly, except at the late germination stage. Sucrose synthase (SS) and sucrose-phosphate synthase (SPS) activities were not significantly changed in T and BE/S in indoor-grown artichokes, while SS activity gradually increased, and SPS activity gradually decreased in field-grown artichokes, alongside sucrose degradation. Compared to T, BE/S generally had higher enzyme activities of 1-FEH and 1-FFT, promoting inulin hydrolysis. This work shows that the process of tuber germination is similar indoors and in the field, and germination studies can therefore be conducted in either environment.

2.
Int J Biol Macromol ; 108: 9-17, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29157907

RESUMO

Inulinases from microorganisms have been extensively studied for their role in the production of fructose from fructan. Fructan can also be hydrolyzed by plant fructan exohydrolases (FEHs), but these enzymes have not been used to produce fructose commercially. Two Ht1-FEHs (Ht1-FEH I and Ht1-FEH II) were recently characterized in Jerusalem artichoke. In this study, we cloned the third member of the Ht1-FEH family in Jerusalem artichoke (i.e., Ht1-FEH III). When heterologously expressed in Pichia pastoris X-33, Ht1-FEH III not only demonstrated hydrolysis activity towards ß (2, 1)-linked fructans and ß (2, 6)-linked levan, but also towards sucrose. To explore the potential industrial applications, we heterologously expressed and purified six plant 1-FEHs from two typical fructan plants (i.e., chicory and Jerusalem artichoke) and showed that chicory Ci1-FEH IIa had the highest hydrolysis capacity to fructan in vitro. Furthermore, we immobilized Ci1-FEH IIa on resin and optimized the immobilization conditions. We found that inulin-type fructan or the tuber extract from Jerusalem artichoke could be rapidly degraded into fructose and sucrose by immobilized Ci1-FEH IIa. The capacity of Ci1-FEH IIa to release fructose from fructans was comparable to that of some inulinases from microorganisms. Thus, plant FEHs have potential applications in fructose production.


Assuntos
Frutanos/metabolismo , Frutose/biossíntese , Helianthus/enzimologia , Hidrolases/genética , Hidrolases/metabolismo , Sequência de Aminoácidos , Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/isolamento & purificação , Enzimas Imobilizadas/metabolismo , Expressão Gênica , Helianthus/genética , Helianthus/metabolismo , Hidrolases/química , Hidrolases/isolamento & purificação , Hidrólise , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...