Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 130368, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401584

RESUMO

Surgical resection remains the primary treatment modality for bone tumors. However, it is prone to local bone defects and tumor recurrence. Therefore, there is an urgent need for multifunctional biomaterials that combine tumor treatment and bone repair after bone tumor surgery. Herein, a chitosan composite scaffold (CS/DOX@Ti-MOF) was designed for both tumor therapy and bone repair. Among them, the amino-functionalized Ti-based metal-organic framework (NH2-MIL-125 (Ti), Ti-MOF) has a high specific surface area of 1116 m2/g and excellent biocompatibility, and promotes osteogenic differentiation. The doxorubicin (DOX) loading capacity of Ti-MOF was 322 ± 21 mg/g, and DOX@Ti-MOF has perfect antitumor activity. Furthermore, the incorporation of DOX@Ti-MOF improved the physical and mechanical properties of the composite scaffolds, making the scaffold surface rough and favorable for cells to attach. CS/DOX@Ti-MOF retains the unique properties of each component. It responds to the release of DOX in the tumor microenvironment to remove residual tumor cells, followed by providing a site for cell attachment, proliferation, and differentiation. This promotes bone repair and achieves the sequential treatment of postoperative bone tumors. Overall, CS/DOX@Ti-MOF may be a promising substitute for postoperative bone tumor clearance and bone defect repair. It also provides a possible strategy for postoperative bone tumor treatment.


Assuntos
Neoplasias Ósseas , Quitosana , Humanos , Osteogênese , Titânio , Recidiva Local de Neoplasia , Doxorrubicina/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/cirurgia , Alicerces Teciduais , Microambiente Tumoral
2.
Heliyon ; 9(12): e22623, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38213589

RESUMO

Small berry pomaces (SBPs) are poorly utilized as an inexpensive source of bioactive compounds. This study investigated the impact of compounding treatment on nutritional and antioxidant characteristics of combined SBPs, in comparison with single SBP. The results showed that the amounts of protein, minerals, dietary fiber (DF) and anthocyanidins were significantly (p < 0.05) higher in combined SBPs than in combined fruits. Moreover, the combined SBPs were characterized by an elevated abundance of minerals and anthocyanidins (6 kinds, and 5 kinds, respectively), substantiating the effectiveness of compounding treatment on SBP nutrition. A total of 776 secondary phytochemicals were detected in combined SBPs by a widely targeted metabolomics approach. Each SBP contained approximately 100 kinds of unique natural antioxidants. Furthermore, the combined SBPs group had the highest antioxidant activity compared with single SBP. Meanwhile, the antioxidant activities determined in combined SBPs were higher than arithmetic mean value of single SBP. The synergism and interaction of active components in different sources of SBPs play vital role in the high antioxidant capacity of combined SBPs. All the results provide reference for the comprehensive development and utilization of fruit residues. The SBPs should be highly prized for their substantial amount of nutritional and bioactive constituents, including protein, DF, essential minerals and secondary metabolites. These secondary metabolites are positively associated with antioxidant benefits. The present study summarizes the knowledge about bioactive compounds and antioxidant activities of combined SBPs group and discusses the relevant mechanisms. A conclusion can be educed that combined process is an effective way to improve properties of the pomaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...