Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 32, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263062

RESUMO

BACKGROUND: Methanomassiliicoccales are a recently identified order of methanogens that are diverse across global environments particularly the gastrointestinal tracts of animals; however, their metabolic capacities are defined via a limited number of cultured strains. RESULTS: Here, we profile and analyze 243 Methanomassiliicoccales genomes assembled from cultured representatives and uncultured metagenomes recovered from various biomes, including the gastrointestinal tracts of different animal species. Our analyses reveal the presence of numerous undefined genera and genetic variability in metabolic capabilities within Methanomassiliicoccales lineages, which is essential for adaptation to their ecological niches. In particular, gastrointestinal tract Methanomassiliicoccales demonstrate the presence of co-diversified members with their hosts over evolutionary timescales and likely originated in the natural environment. We highlight the presence of diverse clades of vitamin transporter BtuC proteins that distinguish Methanomassiliicoccales from other archaeal orders and likely provide a competitive advantage in efficiently handling B12. Furthermore, genome-centric metatranscriptomic analysis of ruminants with varying methane yields reveal elevated expression of select Methanomassiliicoccales genera in low methane animals and suggest that B12 exchanges could enable them to occupy ecological niches that possibly alter the direction of H2 utilization. CONCLUSIONS: We provide a comprehensive and updated account of divergent Methanomassiliicoccales lineages, drawing from numerous uncultured genomes obtained from various habitats. We also highlight their unique metabolic capabilities involving B12, which could serve as promising targets for mitigating ruminant methane emissions by altering H2 flow.


Assuntos
Archaea , Evolução Biológica , Animais , Filogenia , Metano , Ruminantes
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37606090

RESUMO

Bile acids (BAs) play an important role in the regulation of lipid metabolic homeostasis, but little is known about their metabolism in dairy cows fed a high-grain (HG) diet. In the present study, we examined the bacterial community, BA profile, and the FXR/FGF19 signaling pathway in the ileum and liver to investigate the gut microbe-BA metabolism interactions response to HG diet and the changes in the subsequent enterohepatic circulation of dairy cows. The results showed that the ileal bacterial community was altered, with an increase of Paraclostridium, Anaerobutyricum, Shuttleworthia, and Stomatobaculum in the relative abundance in the HG group. Moreover, real-time polymerase chain reaction (PCR) showed that the abundance of total bacteria and bacterial bile-salt hydrolase (BSH) genes was increased in the ileal digesta in the HG group. Meanwhile, HG feeding also decreased the total BA content in the digesta of jejunum and ileum and in feces. HG feeding altered the BA profile in the ileal digesta by increasing unconjugated BAs and decreasing conjugated BAs. In addition, the intestinal FXR/FGF19 signaling pathway was activated. The expression of CYP7A1 (cholesterol 7α-hydroxylase) was depressed, which inhibited BAs synthesis in the liver of cows fed HG. Overall, HG feeding altered the ileal bacterial community and BA profile, and activated FXR/FGF19 signaling pathway, resulting in a decrease of BA level in the ileal digesta via the inhibition of hepatic BA synthesis. The findings provided novel insights into understanding the relationship between gut microbiota and the homeostasis of BAs in dairy cows fed a HG diet.


Bile acids plays an important role in regulating lipids metabolism in animals and human. Dairy cows fed high-grain (HG) diet generally suffer abnormal lipids metabolism. However, if there is a relationship between the bile acids metabolism and abnormal lipids metabolism in dairy cows fed HG diet is unclear. This study found that HG diet altered the bacterial community and bile aids composition in the ileum of dairy cows. HG also activated the FXR/FGF19 signaling pathway in the ileum, and inhibited the bile acid synthesis in the liver, which might be the reason for the reduced level of bile acid in the digesta of small intestine. The reduced bile acid level in the small intestine might affect the digestion and absorption of the dietary lipids in dairy cows fed HG diet.


Assuntos
Lactação , Microbiota , Feminino , Bovinos , Animais , Dieta/veterinária , Íleo , Ácidos e Sais Biliares
3.
Pest Manag Sci ; 77(9): 3871-3880, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33538396

RESUMO

Alternaria species are well-known aggressive pathogens that are widespread globally and warmer temperatures caused by climate change might increase their abundance more drastically. Early blight (EB) disease, caused mainly by Alternaria solani, and brown spot, caused by Alternaria alternata, are major concerns in potato, tomato and eggplant production. The development of EB is strongly linked to varieties, crop development stages, environmental factors, cultivation and field management. Several forecasting models for pesticide application to control EB were created in the last century and more recent scientific advances have included modern breeding technology to detect resistant genes and precision agriculture with hyperspectral sensors to pinpoint damage locations on plants. This paper presents an overview of the EB disease and provides an evaluation of recent scientific advances to control the disease. First of all, we describe the outline of this disease, encompassing biological cycles of the Alternaria genus, favorite climate and soil conditions as well as resistant plant species. Second, versatile management practices to minimize the effect of this pathogen at field level are discussed, covering their limitations and pitfalls. A better understanding of the underlying factors of this disease and the potential of novel research can contribute to implementing integrated pest management systems for an ecofriendly farming system. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Melhoramento Vegetal , Doenças das Plantas , Agricultura , Alternaria , Controle de Pragas , Doenças das Plantas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...