Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1166008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255568

RESUMO

Fruit cracking decreases the total production and the commercial value of watermelon. The molecular mechanisms of fruit cracking are unknown. In this study, 164 recombinant inbred lines (RILs) of watermelon, derived from the crossing of the WQ1 (cracking-sensitive) and WQ2 (cracking-tolerant) lines, were sequenced using specific length amplified fragment sequencing (SLAF-seq). A high-density genetic linkage map was constructed with 3,335 markers spanning 1,322.74 cM, at an average 0.40 cM across whole-genome flanking markers. The cracking tolerance capacity (CTC), depth of fruit cracking (DFC), rind thickness (RT), and rind hardness (RH) were measured for quantitative trait locus (QTL) analysis. Of the four traits analyzed, one major QTL with high phenotypic variation (41.04%-61.37%) was detected at 76.613-76.919 cM on chromosome 2, which contained 104 annotated genes. Differential gene expression analysis with RNA sequencing (RNA-seq) data between the two parents identified 4,508 differentially expressed genes (DEGs). Comparison of the genes between the QTL region and the DEGs obtained eight coexisting genes. Quantitative real-time PCR (qRT-PCR) analysis revealed that these genes were significant differentially expressed between the two parents. These results provide new insights into the identification of QTLs or genes and marker-assisted breeding in watermelon.

2.
Chem Commun (Camb) ; 53(51): 6852-6855, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28604866

RESUMO

A metal-free radical oxidative carbonylation of alkanes is demonstrated, yielding esters and imides by means of di-tert-butylperoxide as an oxidant. Various alkanes, alcohols and amides were compatible in this system generating the desired carbonyl products in up to 86% yields. We proposed a plausible radical cross-coupling process based on the preliminary mechanistic studies.

3.
FEMS Microbiol Lett ; 349(2): 127-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256412

RESUMO

Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is one of the major limiting factors for watermelon production worldwide. Rapid and accurate detection of the causal pathogen is the cornerstone of integrated disease management. In this paper, a real-time fluorescence loop-mediated isothermal amplification (RealAmp) assay was developed for the rapid and quantitative detection of Fon in soil. Positive products were amplified only from Fon isolates and not from any other species or formae speciales of F. oxysporum tested, showing a high specificity of the primer sets. The detection limit of the RealAmp assay was 1.2 pg µL(-1) genomic DNA or 10(3) spores g(-1) of artificially inoculated soil, whereas real-time PCR could detect as low as 12 fg µL(-1) or 10(2) spores g(-1). The RealAmp assay was further applied to detect eight artificially inoculated and 85 field soil samples. No significant differences were found between the results tested by the RealAmp and real-time PCR assays. The RealAmp assay is a simple, rapid and effective technique for the quantitative detection and monitoring of Fon in soil under natural conditions.


Assuntos
Fusarium/genética , Técnicas de Amplificação de Ácido Nucleico , Microbiologia do Solo , DNA Fúngico , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...