Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0286944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37922260

RESUMO

Bacillus coagulans is a probiotic agent widely used in various industries. In this study, we isolated a novel strain of B. coagulans, X26, from soil and characterized its properties. X26 exhibited superior enzyme, acid, and biomass yields when compared with other bacterial probiotics and an antibiotic. Moreover, X26 significantly improved the body weight of rats, highlighting its potential for industrial development as a supplement for animals. To optimize the fermentation process of this bacterium, we adopted the response surface design. When X26 was cultured in a medium with 16.5 g/L maltose, 25.00 g/L yeast extract, and 3.5 g/L K2HPO4, the optimal yield was predicted to be 5.1 × 109 CFU/mL. Consistent with the prediction, the yield of X26 in a 500-mL flask culture was (5.12 ± 0.01) × 109 CFU/mL, and in a 30-L fermenter was (5.11 ± 0.02) × 109 CFU/mL, accounting for a 9.9-fold higher field than that with a basal medium before optimization. We further optimized the fermentation process in the 30-L and a 10-T fermenter, generating yields of (7.8 ± 0.2) × 109 CFU/mL (spore rate: 96.54%) and (8.7 ± 0.1) × 109 CFU/mL (spore rate: 97.93%), respectively. These yields and spore rates were achieved at 45-55°C, the typical fermentation temperature of B. coagulans. Our findings indicate that B. coagulans X26 is a promising probiotic with considerable potential for cost-effective industrial fermentation.


Assuntos
Bacillus coagulans , Probióticos , Ratos , Animais , Fermentação , Reatores Biológicos , Temperatura
2.
Biochem Biophys Res Commun ; 671: 236-245, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37307707

RESUMO

Metastasis-associated in colon cancer 1 (MACC1) is an oncogene associated with the progression and metastasis of many solid cancer entities. High expression of MACC1 is found in colorectal cancer (CRC) tissues. So far, the role of MACC1 in CRC cell pyroptosis and resistance to irinotecan is unclear. The cleavage of Gasdermin-E (GSDME) is the main executors of activated pyroptosis. We found that GSDME enhanced CRC cell pyroptosis and reduced their resistance to irinotecan, while MACC1 inhibited the cleavage of GSDME and CRC cell pyroptosis, promoted CRC cell proliferation, and enhanced the resistance of CRC cells to irinotecan. Therefore, CRC cells with high MACC1 expression and low GSDME expression had higher resistance to irinotecan, while CRC cells with low MACC1 expression and high GSDME expression had lower resistance to irinotecan. Consistently, by analyzing CRC patients who received FOLFIRI (Fluorouracil + Irinotecan + Leucovorin) in combination with chemotherapy in the GEO database, we found that CRC patients with low MACC1 expression and high GSDME expression had higher survival rate. Our study suggests that the expression of MACC1 and GSDME can be used as detection markers to divide CRC patients into irinotecan resistant and sensitive groups, helping to determine the treatment strategy of patients.


Assuntos
Neoplasias Colorretais , Gasderminas , Humanos , Irinotecano/farmacologia , Piroptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transativadores/genética , Transativadores/metabolismo
4.
J Immunol Res ; 2022: 2651790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033393

RESUMO

Diabetes and cancer are common diseases and are frequently diagnosed in the same individual. These patients need to take antidiabetic drugs while receiving antitumor drugs therapy. Recently, immunotherapy offers significant advances for cancer treatment. However, it is unclear whether antidiabetic drugs affect immunotherapy. Here, by employing syngeneic mouse colon cancer model and melanoma model, we studied the effects of 6 common antidiabetic drugs on anti-PD1 immune checkpoint inhibitor in tumor treatment, including acarbose, sitagliptin, metformin, glimepiride, pioglitazone, and insulin. We found that acarbose and sitagliptin enhanced the tumor inhibition of anti-PD1, and metformin had no effect on the tumor inhibition of anti-PD1, whereas glimepiride, pioglitazone, and insulin weakened the tumor inhibition of anti-PD1. Our study suggests that cancer patients receiving anti-PD1 antibody therapy need serious consideration when choosing antidiabetic drugs. In particular, acarbose significantly inhibited tumor growth and further enhanced the therapeutic effect of anti-PD1, which can be widely used in tumor therapy. Based on this study, further clinical trials are expected.


Assuntos
Melanoma , Metformina , Acarbose , Animais , Hipoglicemiantes , Inibidores de Checkpoint Imunológico , Insulina , Camundongos , Pioglitazona , Fosfato de Sitagliptina
5.
BMC Cancer ; 18(1): 539, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739365

RESUMO

BACKGROUND: SETDB1 is a histone H3K9 methyltransferase, which plays a significant role in the occurrence and progression of tumors. Previous studies have confirmed that T-lymphom invasion and metastasis gene (Tiam1) is a protein associated with the metastasis of hepatocellular carcinoma (HCC); however, we have not yet been successful in elucidating the specific mechanism of HCC. METHODS: Yeast two-hybrid test was conducted to screen proteins that interacted with Tiam1 gene. Glutathione-S-transferase (GST) pull-down and crosslinking-immunoprecipitation (CLIP) assays were performed to determine whether SETDB1 can interact with Tiam1 gene. A series of related experiments were performed to explore role of SETDB1 on cell proliferation, migration, and invasion in HCC. Recovery experiment was performed to investigate the effect of Tiam1 knockdown on cell proliferation and migration, which was caused by SETDB1 overexpression in HCC cells. The expression of SETDB1 was frequently upregulated in HCC tissues and positively correlated with Tiam1. RESULTS: GST pull-down and CLIP assays were performed to elucidate the interaction between SETDB1 and Tiam1. Cell proliferation, migration, and epithelial mesenchymal transformation (EMT) in HCC cells was promoted with the overexpression of SETDB1. Following the knockdown of Tiam1 gene, the effect of SETDB1 on cell proliferation and migration was reversed in HCC cells. The expression of SETDB1 was frequently up-regulated in HCC tissues, and it was positively correlated with Tiam1 gene. CONCLUSIONS: Ours is the first study to prove that SETDB1 promotes the proliferation and migration of cells by forming SETDB1-Tiam1 compounds. We found that SETDB1-Tiam1 compounds were involved in a novel pathway, which regulated epigenetic modification of gene expression in HCC samples.


Assuntos
Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Proteínas Metiltransferases/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Proteínas Metiltransferases/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Cancer ; 8(16): 3318-3330, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158805

RESUMO

SETDB1 is a novel histone methyltransferase associated with the functional tri-methylation of histone H3K9. Although aberrant high expression of SETDB1 was experimentally obversed in a variety of solid tumors, its underlying mechanisms in human carcinogenesis are not well known. In this study, we investigated the expression of SETDB1 in a large cohort of colorectal cancer (CRC) samples and cell lines for the first time. Our findings showed that SETDB1 was highly expressed in majority CRC tissues and cell lines; moreover, up-regulation of SETDB1 was negatively correlated with the survival rate of CRC patients. Functionally, over-expression of SETDB1 significantly promoted the proliferation and migration of CRC cells in vitro and in vivo, while knocking down SETDB1 suppressed their growth. Mechanistically, we showed that over-expression of SETDB1 significantly inhibited the apoptosis induced by 5-Fluorouracil in CRC cells, which was closely related to the inhibition of TP53 and BAX expression. Furthermore, we confirmed that SETDB1 could be recruited to the promoter region of TP53, which might contribute its inhibition of apoptosis. For conclusion, our study indicated that SETDB1 is essential for colorectal carcinogenesis, and may be a newly target for treatment and prognostic evaluation in CRC.

7.
Oncol Rep ; 38(4): 2229-2236, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28765950

RESUMO

Zinc finger protein 307 (ZNF307) is a new Krüppel-associated box zinc-finger protein gene and a member of the zinc-finger family of transcriptional factors. Notably, the role of ZNF307 and its underlying mechanisms involved in hepatocarcinogenesis are poorly investigated. In the present study, we found that the expression of ZNF307 was significantly downregulated in hepatocellular carcinoma (HCC) tissues, compared with that in adjacent non-tumor tissues. In vitro studies further demonstrated that ectopic expression of ZNF307 in HCC cell lines Bel7402 and HCCLM3 significantly reduced cell proliferation, migration and invasive ability. Concordantly, knockdown of ZNF307 increased cell proliferation, migration and invasive ability of HCC cell lines MHCC97L and QGY7701. In vivo functional studies showed that upregulation of ZNF307 expression in Bel7402 cells led to a suppression of tumorigenicity in mice, while knockdown of ZNF307 in MHCC97L cells resulted in reverse. effects. Importantly, flow cytometric analysis showed that ZNF307 overexpression increased the incidence of apoptosis, while ZNF307 knockdown decreased the incidence of apoptosis. Consistently, key regulators in apoptosis, such as caspase-3, BAX and BCL-2 were also regulated by ZNF307. Therefore, our results indicate that ZNF307 may serve as a tumor suppressor and inhibits cell proliferation of HCC via inducing apoptosis.


Assuntos
Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Neoplasias Hepáticas/genética , Animais , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Hematol Oncol ; 10(1): 91, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28420424

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and tumor recurrence and metastasis are major factors that contribute to the poor outcome of patients with HCC. Long noncoding RNAs (lncRNAs) are known to regulate different tumorigenic processes, and a growing body of evidence indicates that Hippo kinase signaling is inactivated in many cancers. However, the upstream lncRNA regulators of Hippo kinase signaling in HCC are poorly understood. METHODS: Using a lncRNA microarray, we identified a novel lncRNA, uc.134, whose expression was significantly decreased in the highly aggressive HCC cell line HCCLM3 compared with MHCC97L cells. Furthermore, we evaluated uc.134 expression in clinical samples using in situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The full-length transcript of uc.134 was confirmed using rapid amplification of cDNA ends (RACE) analyses. To investigate the biological function of uc.134, we performed gain-of-function and loss-of-function studies both in vitro and in vivo. The underlying mechanisms of uc.134 in HCC were investigated using RNA pulldown, RNA immunoprecipitation, ubiquitination assays, Western blotting, mRNA microarray analyses, and qRT-PCR analyses. RESULTS: The ISH assay revealed that uc.134 expression was significantly decreased in 170 paraffin-embedded samples from patients with HCC compared with adjacent tissues and uc.134 expression directly correlated with patient prognosis. Furthermore, we defined a 1867-bp full-length transcript of uc.134 using 5'- and 3'-RACE analysis. The overexpression of uc.134 inhibited HCC cell proliferation, invasion, and metastasis in vitro and in vivo, whereas the knockdown of uc.134 produced the opposite results. Furthermore, we confirmed that uc.134 (1408-1867 nt) binds to CUL4A (592-759 aa region) and inhibits its nuclear export. Moreover, we demonstrated that uc.134 inhibits the CUL4A-mediated ubiquitination of LATS1 and increases YAPS127 phosphorylation to silence the target genes of YAP. Finally, a positive correlation between uc.134, LATS1, and pYAPS127 was confirmed in 90 paraffin-embedded samples by ISH and immunohistochemical staining. CONCLUSIONS: Our study identifies that a novel lncRNA, uc.134, represses hepatocellular carcinoma progression by inhibiting the CUL4A-mediated ubiquitination of LATS1 and increasing YAPS127 phosphorylation. The use of this lncRNA may offer a promising treatment approach by inhibiting YAP and activating Hippo kinase signaling.


Assuntos
Carcinoma Hepatocelular/patologia , Progressão da Doença , Proteínas Serina-Treonina Quinases/metabolismo , RNA Longo não Codificante/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Culina/metabolismo , Feminino , Xenoenxertos , Humanos , Neoplasias Hepáticas , Masculino , Camundongos , Metástase Neoplásica , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição , Ubiquitinação/genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...